Is there a performance gain in using single quotes vs double quotes in ruby?

RubyPerformanceSyntax

Ruby Problem Overview


Do you know if using double quotes instead of single quotes in ruby decreases performance in any meaningful way in ruby 1.8 and 1.9.

so if I type

question = 'my question'

is it faster than

question = "my question"

I imagine that ruby tries to figure out if something needs to be evaluated when it encounters double quotes and probably spends some cycles doing just that.

Ruby Solutions


Solution 1 - Ruby

Summary: no speed difference; this great collaborative Ruby style guide recommends being consistent. I now use 'string' unless interpolation is needed (option A in the guide) and like it, but you will typically see more code with "string".

Details:

Theoretically, it can make a difference when your code is parsed, but not only should you not care about parse time in general (negligible compared to execution time), you won't be able to find a significant difference in this case.

The important thing is that when is gets executed it will be exactly the same.

Benchmarking this only shows a lack of understanding of how Ruby works. In both cases, the strings will get parsed to a tSTRING_CONTENT (see the source in parse.y). In other words, the CPU will go through the exact same operations when creating 'string' or "string". The exact same bits will flip the exact same way. Benchmarking this will only show differences that are not significant and due to other factors (GC kicking in, etc.); remember, there can't be any difference in this case! Micro benchmarks like these are difficult to get right. See my gem fruity for a decent tool for this.

Note that if there is interpolation of the form "...#{...}...", this gets parsed to a tSTRING_DBEG, a bunch of tSTRING_DVAR for the each expression in #{...} and a final tSTRING_DEND. That's only if there is interpolation, though, which is not what the OP is about.

I used to suggest you use double quotes everywhere (makes it easier to actually add that #{some_var} later on), but I now use single quotes unless I need interpolation, \n, etc... I like it visually and it's slightly more explicit, since there's no need to parse the string to see if it contains any expression.

Solution 2 - Ruby

$ ruby -v
ruby 1.9.3p0 (2011-10-30 revision 33570) [x86_64-darwin11.0.0]

$ cat benchmark_quotes.rb
# As of Ruby 1.9 Benchmark must be required
require 'benchmark'

n = 1000000
Benchmark.bm(15) do |x|
  x.report("assign single") { n.times do; c = 'a string'; end}
  x.report("assign double") { n.times do; c = "a string"; end}
  x.report("concat single") { n.times do; 'a string ' + 'b string'; end}
  x.report("concat double") { n.times do; "a string " + "b string"; end}
end

$ ruby benchmark_quotes.rb 

                      user     system      total        real
assign single     0.110000   0.000000   0.110000 (  0.116867)
assign double     0.120000   0.000000   0.120000 (  0.116761)
concat single     0.280000   0.000000   0.280000 (  0.276964)
concat double     0.270000   0.000000   0.270000 (  0.278146)

Note: I've updated this to make it work with newer Ruby versions, and cleaned up the header, and run the benchmark on a faster system.

This answer omits some key points. See especially these other answers concerning interpolation and the reason there is no significant difference in performance when using single vs. double quotes.

Solution 3 - Ruby

No one happened to measure concatenation vs interpolation though:

$ ruby -v
ruby 1.8.7 (2008-08-11 patchlevel 72) [i686-darwin9.6.2]
$ cat benchmark_quotes.rb
require 'benchmark'
n = 1000000
Benchmark.bm do |x|
  x.report("assign single") { n.times do; c = 'a string'; end}
  x.report("assign double") { n.times do; c = "a string"; end}
  x.report("assign interp") { n.times do; c = "a string #{'b string'}"; end}
  x.report("concat single") { n.times do; 'a string ' + 'b string'; end}
  x.report("concat double") { n.times do; "a string " + "b string"; end}
end
 
$ ruby -w benchmark_quotes.rb 
      user     system      total        real
assign single  2.600000   1.060000   3.660000 (  3.720909)
assign double  2.590000   1.050000   3.640000 (  3.675082)
assign interp  2.620000   1.050000   3.670000 (  3.704218)
concat single  3.760000   1.080000   4.840000 (  4.888394)
concat double  3.700000   1.070000   4.770000 (  4.818794)

Specifically, note assign interp = 2.62 vs concat single = 3.76. As icing on the cake, I also find interpolation to be more readable than 'a' + var + 'b' especially with regard to spaces.

Solution 4 - Ruby

No difference - unless you're using #{some_var} style string interpolation. But you only get the performance hit if you actually do that.

Modified from Zetetic's example:

require 'benchmark'
n = 1000000
Benchmark.bm do |x|
  x.report("assign single") { n.times do; c = 'a string'; end}
  x.report("assign double") { n.times do; c = "a string"; end}
  x.report("assign interp") { n.times do; c = "a #{n} string"; end}  
  x.report("concat single") { n.times do; 'a string ' + 'b string'; end}
  x.report("concat double") { n.times do; "a string " + "b string"; end}
  x.report("concat interp") { n.times do; "a #{n} string " + "b #{n} string"; end}
end

output

               user       system     total    real
assign single  0.370000   0.000000   0.370000 (  0.374599)
assign double  0.360000   0.000000   0.360000 (  0.366636)
assign interp  1.540000   0.010000   1.550000 (  1.577638)
concat single  1.100000   0.010000   1.110000 (  1.119720)
concat double  1.090000   0.000000   1.090000 (  1.116240)
concat interp  3.460000   0.020000   3.480000 (  3.535724)

Solution 5 - Ruby

Single quotes can be very slightly faster than double quotes because the lexer doesn't have to check for #{} interpolation markers. Depending on implementation, etc. Note that this is a parse-time cost, not a run-time cost.

That said, the actual question was whether using double quoted strings "decreases performance in any meaningful way", to which the answer is a decisive "no". The difference in performance is so incredibly small that it is completely insignificant compared to any real performance concerns. Don't waste your time.

Actual interpolation is a different story, of course. 'foo' will be almost exactly 1 second faster than "#{sleep 1; nil}foo".

Solution 6 - Ruby

Thought I'd add a comparison of 1.8.7 and 1.9.2. I ran them a few times. Variance was about +-0.01.

require 'benchmark'
n = 1000000
Benchmark.bm do |x|
  x.report("assign single") { n.times do; c = 'a string'; end}
  x.report("assign double") { n.times do; c = "a string"; end}
  x.report("assign interp") { n.times do; c = "a #{n} string"; end}
  x.report("concat single") { n.times do; 'a string ' + 'b string'; end}
  x.report("concat double") { n.times do; "a string " + "b string"; end}
  x.report("concat interp") { n.times do; "a #{n} string " + "b #{n} string"; end}
end

ruby 1.8.7 (2010-08-16 patchlevel 302) [x86_64-linux]

assign single  0.180000   0.000000   0.180000 (  0.187233)
assign double  0.180000   0.000000   0.180000 (  0.187566)
assign interp  0.880000   0.000000   0.880000 (  0.877584)
concat single  0.550000   0.020000   0.570000 (  0.567285)
concat double  0.570000   0.000000   0.570000 (  0.570644)
concat interp  1.800000   0.010000   1.810000 (  1.816955)

ruby 1.9.2p0 (2010-08-18 revision 29036) [x86_64-linux]

  user          system      total      real
assign single  0.140000   0.000000   0.140000 (  0.144076)
assign double  0.130000   0.000000   0.130000 (  0.142316)
assign interp  0.650000   0.000000   0.650000 (  0.656088)
concat single  0.370000   0.000000   0.370000 (  0.370663)
concat double  0.370000   0.000000   0.370000 (  0.370076)
concat interp  1.420000   0.000000   1.420000 (  1.412210)

Solution 7 - Ruby

Double quotes take twice as many key strikes to type than single quotes. I'm always in a hurry. I use single quotes. :) And yes, I consider that a "performance gain". :)

Solution 8 - Ruby

There is no significant difference in either direction. It would have to be huge for it to matter.

Except for times when you are sure that there is an actual problem with timing, optimize for programmer maintainability.

The costs of machine time are very very small. The costs of programmer time to write code and maintain it is huge.

What good is an optimization to save seconds, even minutes of runtime over thousands of runs if it means that the code is harder to maintain?

Pick with a style and stick with it but do not pick that style based on statistically insignificant milliseconds of runtime.

Solution 9 - Ruby

I too thought that single quoted strings might be quicker to parse for Ruby. It doesn't seem to be the case.

Anyway, I think the above benchmark are measuring the wrong thing, though. It stands to reason that either versions will be parsed into the same internal string representations so to get the answer as to which is quicker to parse, we shouldn't be measuring performance with string variables, but rather Ruby's speed of parsing strings.

generate.rb: 
10000.times do
  ('a'..'z').to_a.each {|v| print "#{v}='This is a test string.'\n" }
end

#Generate sample ruby code with lots of strings to parse
$ ruby generate.rb > single_q.rb
#Get the double quote version
$ tr \' \" < single_q.rb > double_q.rb

#Compare execution times
$ time ruby single_q.rb 

real    0m0.978s
user    0m0.920s
sys     0m0.048s
$ time ruby double_q.rb 

real    0m0.994s
user    0m0.940s
sys     0m0.044s

Repeated runs don't seem to make much difference. It still takes pretty much the same time to parse either version of the string.

Solution 10 - Ruby

I tried the following:

def measure(t)
  single_measures = []
  double_measures = []
  double_quoted_string = ""
  single_quoted_string = ''
  single_quoted = 0
  double_quoted = 0

  t.times do |i|
	t1 = Time.now
	single_quoted_string << 'a'
	t1 = Time.now - t1
	single_measures << t1

	t2 = Time.now
	double_quoted_string << "a"
	t2 = Time.now - t2
	double_measures << t2

	if t1 > t2 
	  single_quoted += 1
	else
	  double_quoted += 1
	end
  end
  puts "Single quoted did took longer in #{((single_quoted.to_f/t.to_f) * 100).round(2)} percent of the cases"
  puts "Double quoted did took longer in #{((double_quoted.to_f/t.to_f) * 100).round(2)} percent of the cases"

  single_measures_avg = single_measures.inject{ |sum, el| sum + el }.to_f / t
  double_measures_avg = double_measures.inject{ |sum, el| sum + el }.to_f / t
  puts "Single did took an average of #{single_measures_avg} seconds"
  puts "Double did took an average of #{double_measures_avg} seconds"
	puts "\n"
end
both = 10.times do |i|
  measure(1000000)
end

And these are the outputs:

Single quoted did took longer in 32.33 percent of the cases
Double quoted did took longer in 67.67 percent of the cases
Single did took an average of 5.032084099982639e-07 seconds
Double did took an average of 5.171539549983464e-07 seconds

2.

Single quoted did took longer in 26.9 percent of the cases
Double quoted did took longer in 73.1 percent of the cases
Single did took an average of 4.998066229983696e-07 seconds
Double did took an average of 5.223457359986066e-07 seconds

3.

Single quoted did took longer in 26.44 percent of the cases
Double quoted did took longer in 73.56 percent of the cases
Single did took an average of 4.97640888998877e-07 seconds
Double did took an average of 5.132918459987151e-07 seconds

4.

Single quoted did took longer in 26.57 percent of the cases
Double quoted did took longer in 73.43 percent of the cases
Single did took an average of 5.017136069985988e-07 seconds
Double did took an average of 5.004514459988143e-07 seconds

5.

Single quoted did took longer in 26.03 percent of the cases
Double quoted did took longer in 73.97 percent of the cases
Single did took an average of 5.059069689983285e-07 seconds
Double did took an average of 5.028807639983705e-07 seconds

6.

Single quoted did took longer in 25.78 percent of the cases
Double quoted did took longer in 74.22 percent of the cases
Single did took an average of 5.107472039991399e-07 seconds
Double did took an average of 5.216212339990241e-07 seconds

7.

Single quoted did took longer in 26.48 percent of the cases
Double quoted did took longer in 73.52 percent of the cases
Single did took an average of 5.082368429989468e-07 seconds
Double did took an average of 5.076817109989933e-07 seconds

8.

Single quoted did took longer in 25.97 percent of the cases
Double quoted did took longer in 74.03 percent of the cases
Single did took an average of 5.077162969990005e-07 seconds
Double did took an average of 5.108381859991112e-07 seconds

9.

Single quoted did took longer in 26.28 percent of the cases
Double quoted did took longer in 73.72 percent of the cases
Single did took an average of 5.148080479983138e-07 seconds
Double did took an average of 5.165793929982176e-07 seconds

10.

Single quoted did took longer in 25.03 percent of the cases
Double quoted did took longer in 74.97 percent of the cases
Single did took an average of 5.227828659989748e-07 seconds
Double did took an average of 5.218296609988378e-07 seconds

If I made no mistake, it seems to me that both take approximately the same time, even though single quoted is slightly faster in most cases.

Solution 11 - Ruby

It's certainly possible depending on the implementation, but the scanning portion of the interpreter should only look at each character once. It will need just an additional state (or possible set of states) and transitions to handle #{} blocks.

In a table based scanner thats going to be a single lookup to determine transition, and will be happening for each character anyways.

When the parser gets the scanner output, it's already known that it will have to eval code in the block. So the overhead is only really the memory overhead in the scanner/parser to handle the #{} block, which you pay for either way.

Unless I'm missing something (or misremembering compiler construction details), which is also certainly possible :)

Solution 12 - Ruby

~ > ruby -v   
jruby 1.6.7 (ruby-1.8.7-p357) (2012-02-22 3e82bc8) (Java HotSpot(TM) 64-Bit Server VM 1.6.0_37) [darwin-x86_64-java]
~ > cat qu.rb 
require 'benchmark'

n = 1000000
Benchmark.bm do |x|
  x.report("assign single") { n.times do; c = 'a string'; end}
  x.report("assign double") { n.times do; c = "a string"; end}
  x.report("concat single") { n.times do; 'a string ' + 'b string'; end}
  x.report("concat double") { n.times do; "a string " + "b string"; end}
end
~ > ruby qu.rb
      user     system      total        real
assign single  0.186000   0.000000   0.186000 (  0.151000)
assign double  0.062000   0.000000   0.062000 (  0.062000)
concat single  0.156000   0.000000   0.156000 (  0.156000)
concat double  0.124000   0.000000   0.124000 (  0.124000)

Solution 13 - Ruby

There's one you all missed.

HERE doc

try this

require 'benchmark'
mark = <<EOS
a string
EOS
n = 1000000
Benchmark.bm do |x|
  x.report("assign here doc") {n.times do;  mark; end}
end

It gave me

`asign here doc  0.141000   0.000000   0.141000 (  0.140625)`

and

'concat single quotes  1.813000   0.000000   1.813000 (  1.843750)'
'concat double quotes  1.812000   0.000000   1.812000 (  1.828125)'

so it's certainly better than concat and writing all those puts.

I would like to see Ruby taught more along the lines of a document manipulation language.

After all, don't we really do that in Rails, Sinatra, and running tests?

Solution 14 - Ruby

I modded Tim Snowhite's answer.

require 'benchmark'
n = 1000000
attr_accessor = :a_str_single, :b_str_single, :a_str_double, :b_str_double
@a_str_single = 'a string'
@b_str_single = 'b string'
@a_str_double = "a string"
@b_str_double = "b string"
@did_print = false
def reset!
	@a_str_single = 'a string'
	@b_str_single = 'b string'
	@a_str_double = "a string"
	@b_str_double = "b string"
end
Benchmark.bm do |x|
	x.report('assign single       ') { n.times do; c = 'a string'; end}
	x.report('assign via << single') { c =''; n.times do; c << 'a string'; end}
	x.report('assign double       ') { n.times do; c = "a string"; end}
	x.report('assing interp       ') { n.times do; c = "a string #{'b string'}"; end}
	x.report('concat single       ') { n.times do; 'a string ' + 'b string'; end}
	x.report('concat double       ') { n.times do; "a string " + "b string"; end}
	x.report('concat single interp') { n.times do; "#{@a_str_single}#{@b_str_single}"; end}
	x.report('concat single <<    ') { n.times do; @a_str_single << @b_str_single; end}
	reset!
	# unless @did_print
	# 	@did_print = true
	# 	puts @a_str_single.length 
	# 	puts " a_str_single: #{@a_str_single} , b_str_single: #{@b_str_single} !!"
	# end
	x.report('concat double interp') { n.times do; "#{@a_str_double}#{@b_str_double}"; end}
	x.report('concat double <<    ') { n.times do; @a_str_double << @b_str_double; end}
end

Results:

jruby 1.7.4 (1.9.3p392) 2013-05-16 2390d3b on Java HotSpot(TM) 64-Bit Server VM 1.7.0_10-b18 [darwin-x86_64]
       user     system      total        real
assign single         0.220000   0.010000   0.230000 (  0.108000)
assign via << single  0.280000   0.010000   0.290000 (  0.138000)
assign double         0.050000   0.000000   0.050000 (  0.047000)
assing interp         0.100000   0.010000   0.110000 (  0.056000)
concat single         0.230000   0.010000   0.240000 (  0.159000)
concat double         0.150000   0.010000   0.160000 (  0.101000)
concat single interp  0.170000   0.000000   0.170000 (  0.121000)
concat single <<      0.100000   0.000000   0.100000 (  0.076000)
concat double interp  0.160000   0.000000   0.160000 (  0.108000)
concat double <<      0.100000   0.000000   0.100000 (  0.074000)

ruby 1.9.3p429 (2013-05-15 revision 40747) [x86_64-darwin12.4.0]
       user     system      total        real
assign single         0.100000   0.000000   0.100000 (  0.103326)
assign via << single  0.160000   0.000000   0.160000 (  0.163442)
assign double         0.100000   0.000000   0.100000 (  0.102212)
assing interp         0.110000   0.000000   0.110000 (  0.104671)
concat single         0.240000   0.000000   0.240000 (  0.242592)
concat double         0.250000   0.000000   0.250000 (  0.244666)
concat single interp  0.180000   0.000000   0.180000 (  0.182263)
concat single <<      0.120000   0.000000   0.120000 (  0.126582)
concat double interp  0.180000   0.000000   0.180000 (  0.181035)
concat double <<      0.130000   0.010000   0.140000 (  0.128731)

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestiondimusView Question on Stackoverflow
Solution 1 - RubyMarc-André LafortuneView Answer on Stackoverflow
Solution 2 - RubyzeteticView Answer on Stackoverflow
Solution 3 - RubyTim SnowhiteView Answer on Stackoverflow
Solution 4 - RubymadlepView Answer on Stackoverflow
Solution 5 - RubyRein HenrichsView Answer on Stackoverflow
Solution 6 - RubyPhilTView Answer on Stackoverflow
Solution 7 - RubyaqnView Answer on Stackoverflow
Solution 8 - RubyAndy LesterView Answer on Stackoverflow
Solution 9 - RubyPSkocikView Answer on Stackoverflow
Solution 10 - RubyMarcelo XavierView Answer on Stackoverflow
Solution 11 - RubyµBioView Answer on Stackoverflow
Solution 12 - RubygrilixView Answer on Stackoverflow
Solution 13 - RubyDouglas G. AllenView Answer on Stackoverflow
Solution 14 - RubyNickView Answer on Stackoverflow