Mixing Erlang and Haskell

HaskellFunctional ProgrammingErlangGarbage CollectionGhc

Haskell Problem Overview


If you've bought into the functional programming paradigm, the chances are that you like both Erlang and Haskell. Both have purely functional cores and other goodness such as lightweight threads that make them a good fit for a multicore world. But there are some differences too.

Erlang is a commercially proven fault-tolerant language with a mature distribution model. It has a seemingly unique feature in its ability to upgrade its version at runtime via hot code loading. (Way cool!)

Haskell, on the otherhand, has the most sophisticated type system of any mainstream language. (Where I define 'mainstream' to be any language that has a published O'Reilly book so Haskell counts.) Its straightline single threaded performance looks superior to Erlang's and its lightweight threads look even lighter too.

I am trying to put together a development platform for the rest of my coding life and was wondering whether it was possible to mix Erlang and Haskell to achieve a best of breed platform. This question has two parts:

  1. I'd like to use Erlang as a kind of fault tolerant MPI to glue GHC runtime instances together. There would be one Erlang process per GHC runtime. If "the impossible happened" and the GHC runtime died, then the Erlang process would detect that somehow and die too. Erlang's hot code loading and distribution features would just continue to work. The GHC runtime could be configured to use just one core, or all cores on the local machine, or any combination in between. Once the Erlang library was written, the rest of the Erlang level code should be purely boilerplate and automatically generated on a per application basis. (Perhaps by a Haskell DSL for example.) How does one achieve at least some of these things?
  2. I'd like Erlang and Haskell to be able to share the same garabage collector. (This is a much further out idea than 1.) Languages that run on the JVM and the CLR achieve greater mass by sharing a runtime. I understand there are technical limitations to running Erlang (hot code loading) and Haskell (higher kinded polymorphism) on either the JVM or the CLR. But what about unbundling just the garbage collector? (Sort of the start of a runtime for functional languages.) Allocation would obviously still have to be really fast, so maybe that bit needs to be statically linked in. And there should be some mechansim to distinguish the mutable heap from the immutable heap (incuding lazy write once memory) as GHC needs this. Would it be feasible to modify both HIPE and GHC so that the garbage collectors could share a heap?

Please answer with any experiences (positive or negative), ideas or suggestions. In fact, any feedback (short of straight abuse!) is welcome.

Update

Thanks for all 4 replies to date - each taught me at least one useful thing that I did not know.

Regarding the rest of coding life thing - I included it slightly tongue in cheek to spark debate, but it is actually true. There is a project that I have in mind that I intend to work on until I die, and it needs a stable platform.

In the platform I have proposed above, I would only write Haskell, as the boilerplate Erlang would be automatically generated. So how long will Haskell last? Well Lisp is still with us and doesn't look like it is going away anytime soon. Haskell is BSD3 open source and has achieved critical mass. If programming itself is still around in 50 years time, I would expect Haskell, or some continuous evolution of Haskell, will still be here.

Update 2 in response to rvirding's post

Agreed - implementing a complete "Erskell/Haslang" universal virtual machine might not be absolutely impossible, but it would certainly be very difficult indeed. Sharing just the garbage collector level as something like a VM, while still difficult, sounds an order of magnitude less difficult to me though. At the garbage collection model, functional languages must have a lot in common - the unbiquity of immutable data (including thunks) and the requirement for very fast allocation. So the fact that commonality is bundled tightly with monolithic VMs seems kind of odd.

VMs do help achieve critical mass. Just look at how 'lite' functional languages like F# and Scala have taken off. Scala may not have the absolute fault tolerance of Erlang, but it offers an escape route for the very many folks who are tied to the JVM.

> While having a single heap makes > message passing very fast it > introduces a number of other problems, > mainly that doing GC becomes more > difficult as it has to be interactive > and globally non-interruptive so you > can't use the same simpler algorithms > as the per-process heap model.

Absolutely, that makes perfect sense to me. The very smart people on the GHC development team appear to be trying to solve part of the problem with a parallel "stop the world" GC.

http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel-gc/par-gc-ismm08.pdf

(Obviously "stop the world" would not fly for general Erlang given its main use case.) But even in the use cases where "stop the world" is OK, their speedups do not appear to be universal. So I agree with you, it is unlikely that there is a universally best GC, which is the reason I specified in part 1. of my question that

> The GHC runtime could be configured to > use just one core, or all cores on the > local machine, or any combination in > between.

In that way, for a given use case, I could, after benchmarking, choose to go the Erlang way, and run one GHC runtime (with a singlethreaded GC) plus one Erlang process per core and let Erlang copy memory between cores for good locality.

Alternatively, on a dual processor machine with 4 cores per processor with good memory bandwidth on the processor, benchmarking might suggest that I run one GHC runtime (with a parallel GC) plus one Erlang process per processor.

In both cases, if Erlang and GHC could share a heap, the sharing would probably be bound to a single OS thread running on a single core somehow. (I am getting out of my depth here, which is why I asked the question.)

I also have another agenda - benchmarking functional languages independently of GC. Often I read of results of benchmarks of OCaml v GHC v Erlang v ... and wonder how much the results are confounded by the different GCs. What if choice of GC could be orthogonal to choice of functional language? How expensive is GC anyway? See this devil advocates blog post

http://john.freml.in/garbage-collection-harmful

by my Lisp friend John Fremlin, which he has, charmingly, given his post title "Automated garbage collection is rubbish". When John claims that GC is slow and hasn't really sped up that much, I would like to be able to counter with some numbers.

Haskell Solutions


Solution 1 - Haskell

A lot of Haskell and Erlang people are interested in the model where Erlang supervises distribution, while Haskell runs the shared memory nodes in parallel doing all the number crunching/logic.

A start towards this is the haskell-erlang library: http://hackage.haskell.org/package/erlang

And we have similar efforts in Ruby land, via Hubris: http://github.com/mwotton/Hubris/tree/master

The question now is to find someone to actually push through the Erlang / Haskell interop to find out the tricky issues.

Solution 2 - Haskell

You're going to have an interesting time mixing GC between Haskell and Erlang. Erlang uses a per-process heap and copies data between processes -- as Haskell doesn't even have a concept of processes, I'm not sure how you would map this "universal" GC between the two. Furthermore, for best performance, Erlang uses a variety of allocators, each with slightly tweaked behaviours that I'm sure would affect the GC sub-system.

As with all things in software, abstraction comes at a cost. In this case, I rather suspect you'd have to introduce so many layers to get both languages over their impedance mismatch that you'd wind up with a not very performant (or useful) common VM.

Bottom line -- embrace the difference! There are huge advantages to NOT running everything in the same process, particularly from a reliability standpoint. Also, I think it's a little naive to expect one language/VM to last you for the rest of your life (unless you plan on a.) living a short time or b.) becoming some sort of code monk that ONLY works on a single project). Software development is all about mental agility and being willing to use the best available tools to build fast, reliable code.

Solution 3 - Haskell

Although this is a pretty old thread, if readers are still interested then it's worth taking a look at Cloud Haskell, which brings Erlang style concurrency and distribution to the GHC stable.

The forthcoming distributed-process-platform library adds support for OTP-esque constructs like gen_servers, supervision trees and various other "haskell flavoured" abstractions borrowed from and inspired by Erlang/OTP.

Solution 4 - Haskell

  1. You could use an OTP gen_supervisor process to monitor Haskell instances that you spawn with open_port(). Depending on how the "port" exited, you would then be able to restart it or decide that it stopped on purpose and let the corresponding Erlang process die, too.

  2. Fugheddaboudit. Even these language-independent VMs you speak of have trouble with data passed between languages sometimes. You should just serialize data between the two somehow: database, XML-RPC, something like that.

By the way, the idea of a single platform for the rest of your life is probably impractical, too. Computing technology and fashion change too often to expect that you can keep using just one language forever. Your very question points this out: no one language does everything we might wish, even today.

Solution 5 - Haskell

As dizzyd mentioned in his comment not all data in messages is copied, large binaries exist outside of the process heaps and are not copied.

Using a different memory structure to avoid having separate per-process heaps is certainly possible and has been done in a number of earlier implementations. While having a single heap makes message passing very fast it introduces a number of other problems, mainly that doing GC becomes more difficult as it has to be interactive and globally non-interruptive so you can't use the same simpler algorithms as the per-process heap model.

As long as we use have immutable data-structures there is no problem with robustness and safety. Deciding on which memory and GC models to use is a big trade-off, and unfortunately there universally best model.

While Haskell and Erlang are both functional languages they are in many respects very different languages and have very different implementations. It would difficult to come up with an "Erskell" (or Haslang) machine which could handle both languages efficiently. I personally think it is much better to keep them separate and to make sure you have a really good interface between them.

Solution 6 - Haskell

The CLR supports tail call optimization with an explicit tail opcode (as used by F#), which the JVM doesn't (yet) have an equivalent, which limits the implementation of such a style of language. The use of separate AppDomains does allow the CLR to hot-swap code (see e.g. this blog post showing how it can be done).

With Simon Peyton Jones working just down the corridor from Don Syme and the F# team at Microsoft Research, it would be a great disappointment if we didn't eventually see an IronHaskell with some sort of official status. An IronErlang would be an interesting project -- the biggest piece of work would probably be porting the green-threading scheduler without getting as heavyweight as the Windows Workflow engine, or having to run a BEAM VM on top the CLR.

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionPaul DelhantyView Question on Stackoverflow
Solution 1 - HaskellDon StewartView Answer on Stackoverflow
Solution 2 - HaskelldizzydView Answer on Stackoverflow
Solution 3 - HaskellhyperthunkView Answer on Stackoverflow
Solution 4 - HaskellWarren YoungView Answer on Stackoverflow
Solution 5 - HaskellrvirdingView Answer on Stackoverflow
Solution 6 - HaskellSteve GilhamView Answer on Stackoverflow