How do I append one string to another in Python?

PythonStringAppend

Python Problem Overview


How do I efficiently append one string to another? Are there any faster alternatives to:

var1 = "foo"
var2 = "bar"
var3 = var1 + var2

Python Solutions


Solution 1 - Python

If you only have one reference to a string and you concatenate another string to the end, CPython now special cases this and tries to extend the string in place.

The end result is that the operation is amortized O(n).

e.g.

s = ""
for i in range(n):
    s+=str(i)

used to be O(n^2), but now it is O(n).

From the source (bytesobject.c):

void
PyBytes_ConcatAndDel(register PyObject **pv, register PyObject *w)
{
    PyBytes_Concat(pv, w);
    Py_XDECREF(w);
}


/* The following function breaks the notion that strings are immutable:
   it changes the size of a string.  We get away with this only if there
   is only one module referencing the object.  You can also think of it
   as creating a new string object and destroying the old one, only
   more efficiently.  In any case, don't use this if the string may
   already be known to some other part of the code...
   Note that if there's not enough memory to resize the string, the original
   string object at *pv is deallocated, *pv is set to NULL, an "out of
   memory" exception is set, and -1 is returned.  Else (on success) 0 is
   returned, and the value in *pv may or may not be the same as on input.
   As always, an extra byte is allocated for a trailing \0 byte (newsize
   does *not* include that), and a trailing \0 byte is stored.
*/

int
_PyBytes_Resize(PyObject **pv, Py_ssize_t newsize)
{
    register PyObject *v;
    register PyBytesObject *sv;
    v = *pv;
    if (!PyBytes_Check(v) || Py_REFCNT(v) != 1 || newsize < 0) {
        *pv = 0;
        Py_DECREF(v);
        PyErr_BadInternalCall();
        return -1;
    }
    /* XXX UNREF/NEWREF interface should be more symmetrical */
    _Py_DEC_REFTOTAL;
    _Py_ForgetReference(v);
    *pv = (PyObject *)
        PyObject_REALLOC((char *)v, PyBytesObject_SIZE + newsize);
    if (*pv == NULL) {
        PyObject_Del(v);
        PyErr_NoMemory();
        return -1;
    }
    _Py_NewReference(*pv);
    sv = (PyBytesObject *) *pv;
    Py_SIZE(sv) = newsize;
    sv->ob_sval[newsize] = '\0';
    sv->ob_shash = -1;          /* invalidate cached hash value */
    return 0;
}

It's easy enough to verify empirically.

$ python -m timeit -s"s=''" "for i in xrange(10):s+='a'"
1000000 loops, best of 3: 1.85 usec per loop
$ python -m timeit -s"s=''" "for i in xrange(100):s+='a'"
10000 loops, best of 3: 16.8 usec per loop
$ python -m timeit -s"s=''" "for i in xrange(1000):s+='a'"
10000 loops, best of 3: 158 usec per loop
$ python -m timeit -s"s=''" "for i in xrange(10000):s+='a'"
1000 loops, best of 3: 1.71 msec per loop
$ python -m timeit -s"s=''" "for i in xrange(100000):s+='a'"
10 loops, best of 3: 14.6 msec per loop
$ python -m timeit -s"s=''" "for i in xrange(1000000):s+='a'"
10 loops, best of 3: 173 msec per loop

It's important however to note that this optimisation isn't part of the Python spec. It's only in the cPython implementation as far as I know. The same empirical testing on pypy or jython for example might show the older O(n**2) performance .

$ pypy -m timeit -s"s=''" "for i in xrange(10):s+='a'"
10000 loops, best of 3: 90.8 usec per loop
$ pypy -m timeit -s"s=''" "for i in xrange(100):s+='a'"
1000 loops, best of 3: 896 usec per loop
$ pypy -m timeit -s"s=''" "for i in xrange(1000):s+='a'"
100 loops, best of 3: 9.03 msec per loop
$ pypy -m timeit -s"s=''" "for i in xrange(10000):s+='a'"
10 loops, best of 3: 89.5 msec per loop

So far so good, but then,

$ pypy -m timeit -s"s=''" "for i in xrange(100000):s+='a'"
10 loops, best of 3: 12.8 sec per loop

ouch even worse than quadratic. So pypy is doing something that works well with short strings, but performs poorly for larger strings.

Solution 2 - Python

Don't prematurely optimize. If you have no reason to believe there's a speed bottleneck caused by string concatenations then just stick with + and +=:

s  = 'foo'
s += 'bar'
s += 'baz'

That said, if you're aiming for something like Java's StringBuilder, the canonical Python idiom is to add items to a list and then use str.join to concatenate them all at the end:

l = []
l.append('foo')
l.append('bar')
l.append('baz')

s = ''.join(l)

Solution 3 - Python

str1 = "Hello"
str2 = "World"
newstr = " ".join((str1, str2))

That joins str1 and str2 with a space as separators. You can also do "".join(str1, str2, ...). str.join() takes an iterable, so you'd have to put the strings in a list or a tuple.

That's about as efficient as it gets for a builtin method.

Solution 4 - Python

Don't.

That is, for most cases you are better off generating the whole string in one go rather then appending to an existing string.

For example, don't do: obj1.name + ":" + str(obj1.count)

Instead: use "%s:%d" % (obj1.name, obj1.count)

That will be easier to read and more efficient.

Solution 5 - Python

Python 3.6 gives us f-strings, which are a delight:

var1 = "foo"
var2 = "bar"
var3 = f"{var1}{var2}"
print(var3)                       # prints foobar

You can do most anything inside the curly braces

print(f"1 + 1 == {1 + 1}")        # prints 1 + 1 == 2

Solution 6 - Python

If you need to do many append operations to build a large string, you can use StringIO or cStringIO. The interface is like a file. ie: you write to append text to it.

If you're just appending two strings then just use +.

Solution 7 - Python

it really depends on your application. If you're looping through hundreds of words and want to append them all into a list, .join() is better. But if you're putting together a long sentence, you're better off using +=.

Solution 8 - Python

Basically, no difference. The only consistent trend is that Python seems to be getting slower with every version... :(


List

%%timeit
x = []
for i in range(100000000):  # xrange on Python 2.7
    x.append('a')
x = ''.join(x)

Python 2.7

> 1 loop, best of 3: 7.34 s per loop

Python 3.4

> 1 loop, best of 3: 7.99 s per loop

Python 3.5

> 1 loop, best of 3: 8.48 s per loop

Python 3.6

> 1 loop, best of 3: 9.93 s per loop


String

%%timeit
x = ''
for i in range(100000000):  # xrange on Python 2.7
    x += 'a'

Python 2.7:

> 1 loop, best of 3: 7.41 s per loop

Python 3.4

> 1 loop, best of 3: 9.08 s per loop

Python 3.5

> 1 loop, best of 3: 8.82 s per loop

Python 3.6

> 1 loop, best of 3: 9.24 s per loop

Solution 9 - Python

Append strings with the add function:

str1 = "Hello"
str2 = " World"
str3 = str1.__add__(str2)
print(str3)

Output:

Hello World

Solution 10 - Python

a='foo'
b='baaz'

a.__add__(b)

out: 'foobaaz'

Solution 11 - Python

One other option is to use .format as following:

print("{}{}".format(var1, var2))

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
Questionuser469652View Question on Stackoverflow
Solution 1 - PythonJohn La RooyView Answer on Stackoverflow
Solution 2 - PythonJohn KugelmanView Answer on Stackoverflow
Solution 3 - PythonRafe KettlerView Answer on Stackoverflow
Solution 4 - PythonWinston EwertView Answer on Stackoverflow
Solution 5 - PythonTrentonView Answer on Stackoverflow
Solution 6 - PythonLaurence GonsalvesView Answer on Stackoverflow
Solution 7 - PythonRamyView Answer on Stackoverflow
Solution 8 - PythonostrokachView Answer on Stackoverflow
Solution 9 - Pythonsaigopi.meView Answer on Stackoverflow
Solution 10 - PythonRahul ShrivastavaView Answer on Stackoverflow
Solution 11 - PythonBaris OzenselView Answer on Stackoverflow