How to use MDC with thread pools?

JavaLoggingSlf4jLogbackMdc

Java Problem Overview


In our software we extensively use MDC to track things like session IDs and user names for web requests. This works fine while running in the original thread.

However, there's a lot of things that need to be processed in the background. For that we use the java.concurrent.ThreadPoolExecutor and java.util.Timer classes along with some self-rolled async execution services. All these services manage their own thread pool.

This is what Logback's manual has to say about using MDC in such an environment:

> A copy of the mapped diagnostic context can not always be inherited by worker threads from the initiating thread. This is the case when java.util.concurrent.Executors is used for thread management. For instance, newCachedThreadPool method creates a ThreadPoolExecutor and like other thread pooling code, it has intricate thread creation logic. > > In such cases, it is recommended that MDC.getCopyOfContextMap() is invoked on the original (master) thread before submitting a task to the executor. When the task runs, as its first action, it should invoke MDC.setContextMapValues() to associate the stored copy of the original MDC values with the new Executor managed thread.

This would be fine, but it is a very easy to forget adding those calls, and there is no easy way to recognize the problem until it is too late. The only sign with Log4j is that you get missing MDC info in the logs, and with Logback you get stale MDC info (since the thread in the tread pool inherits its MDC from the first task that was ran on it). Both are serious problems in a production system.

I don't see our situation special in any way, yet I could not find much about this problem on the web. Apparently, this is not something that many people bump up against, so there must be a way to avoid it. What are we doing wrong here?

Java Solutions


Solution 1 - Java

Yes, this is a common problem I've run into as well. There are a few workarounds (like manually setting it, as described), but ideally you want a solution that

  • Sets the MDC consistently;
  • Avoids tacit bugs where the MDC is incorrect but you don't know it; and
  • Minimizes changes to how you use thread pools (e.g. subclassing Callable with MyCallable everywhere, or similar ugliness).

Here's a solution that I use that meets these three needs. Code should be self-explanatory.

(As a side note, this executor can be created and fed to Guava's MoreExecutors.listeningDecorator(), if you use Guava's ListanableFuture.)

import org.slf4j.MDC;

import java.util.Map;
import java.util.concurrent.*;

/**
 * A SLF4J MDC-compatible {@link ThreadPoolExecutor}.
 * <p/>
 * In general, MDC is used to store diagnostic information (e.g. a user's session id) in per-thread variables, to facilitate
 * logging. However, although MDC data is passed to thread children, this doesn't work when threads are reused in a
 * thread pool. This is a drop-in replacement for {@link ThreadPoolExecutor} sets MDC data before each task appropriately.
 * <p/>
 * Created by jlevy.
 * Date: 6/14/13
 */
public class MdcThreadPoolExecutor extends ThreadPoolExecutor {

    final private boolean useFixedContext;
    final private Map<String, Object> fixedContext;

    /**
     * Pool where task threads take MDC from the submitting thread.
     */
    public static MdcThreadPoolExecutor newWithInheritedMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime,
                                                            TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        return new MdcThreadPoolExecutor(null, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
    }

    /**
     * Pool where task threads take fixed MDC from the thread that creates the pool.
     */
    @SuppressWarnings("unchecked")
    public static MdcThreadPoolExecutor newWithCurrentMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime,
                                                          TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        return new MdcThreadPoolExecutor(MDC.getCopyOfContextMap(), corePoolSize, maximumPoolSize, keepAliveTime, unit,
                workQueue);
    }

    /**
     * Pool where task threads always have a specified, fixed MDC.
     */
    public static MdcThreadPoolExecutor newWithFixedMdc(Map<String, Object> fixedContext, int corePoolSize,
                                                        int maximumPoolSize, long keepAliveTime, TimeUnit unit,
                                                        BlockingQueue<Runnable> workQueue) {
        return new MdcThreadPoolExecutor(fixedContext, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
    }

    private MdcThreadPoolExecutor(Map<String, Object> fixedContext, int corePoolSize, int maximumPoolSize,
                                  long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
        this.fixedContext = fixedContext;
        useFixedContext = (fixedContext != null);
    }

    @SuppressWarnings("unchecked")
    private Map<String, Object> getContextForTask() {
        return useFixedContext ? fixedContext : MDC.getCopyOfContextMap();
    }

    /**
     * All executions will have MDC injected. {@code ThreadPoolExecutor}'s submission methods ({@code submit()} etc.)
     * all delegate to this.
     */
    @Override
    public void execute(Runnable command) {
        super.execute(wrap(command, getContextForTask()));
    }

    public static Runnable wrap(final Runnable runnable, final Map<String, Object> context) {
        return new Runnable() {
            @Override
            public void run() {
                Map previous = MDC.getCopyOfContextMap();
                if (context == null) {
                    MDC.clear();
                } else {
                    MDC.setContextMap(context);
                }
                try {
                    runnable.run();
                } finally {
                    if (previous == null) {
                        MDC.clear();
                    } else {
                        MDC.setContextMap(previous);
                    }
                }
            }
        };
    }
}

Solution 2 - Java

We have run into a similar problem. You might want to extend ThreadPoolExecutor and override before/afterExecute methods to make the MDC calls you need before starting/stopping new threads.

Solution 3 - Java

IMHO the best solution is to:

  • use ThreadPoolTaskExecutor
  • implement your own TaskDecorator
  • use it: executor.setTaskDecorator(new LoggingTaskDecorator());

The decorator can look like this:

private final class LoggingTaskDecorator implements TaskDecorator {

    @Override
    public Runnable decorate(Runnable task) {
        // web thread
        Map<String, String> webThreadContext = MDC.getCopyOfContextMap();
        return () -> {
            // work thread
            try {
                // TODO: is this thread safe?
                MDC.setContextMap(webThreadContext);
                task.run();
            } finally {
                MDC.clear();
            }
        };
    }

}

Solution 4 - Java

This is how I do it with fixed thread pools and executors:

ExecutorService executor = Executors.newFixedThreadPool(4);
Map<String, String> mdcContextMap = MDC.getCopyOfContextMap();

In the threading part:

executor.submit(() -> {
	MDC.setContextMap(mdcContextMap);
    // my stuff
});

Solution 5 - Java

In case you face this problem in a spring framework related environment where you run tasks by using @Async annotation you are able to decorate the tasks by using the TaskDecorator approach.

A sample of how to do it is provided here:

I faced this issue and the article above helped me to tackle it so that's why I am sharing it here.

Solution 6 - Java

Similar to the previously posted solutions, the [newTaskFor][1] methods for Runnable and Callable can be overwritten in order to wrap the argument (see accepted solution) when creating the RunnableFuture.

Note: Consequently, the executorService's submit method must be called instead of the execute method.

For the ScheduledThreadPoolExecutor, the [decorateTask][2] methods would be overwritten instead.

[1]: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/AbstractExecutorService.html#newTaskFor-java.lang.Runnable-T- "newTaskFor" [2]: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledThreadPoolExecutor.html#decorateTask-java.lang.Runnable-java.util.concurrent.RunnableScheduledFuture- "decorateTask"

Solution 7 - Java

Another variation similar to existing answers here is to implement ExecutorService and allow a delegate to be passed to it. Then using generics, it can still expose the actual delegate in case one wants to get some stats (as long no other modification methods are used).

Reference code:

public class MDCExecutorService<D extends ExecutorService> implements ExecutorService {

    private final D delegate;

    public MDCExecutorService(D delegate) {
        this.delegate = delegate;
    }

    @Override
    public void shutdown() {
        delegate.shutdown();
    }

    @Override
    public List<Runnable> shutdownNow() {
        return delegate.shutdownNow();
    }

    @Override
    public boolean isShutdown() {
        return delegate.isShutdown();
    }

    @Override
    public boolean isTerminated() {
        return delegate.isTerminated();
    }

    @Override
    public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException {
        return delegate.awaitTermination(timeout, unit);
    }

    @Override
    public <T> Future<T> submit(Callable<T> task) {
        return delegate.submit(wrap(task));
    }

    @Override
    public <T> Future<T> submit(Runnable task, T result) {
        return delegate.submit(wrap(task), result);
    }

    @Override
    public Future<?> submit(Runnable task) {
        return delegate.submit(wrap(task));
    }

    @Override
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException {
        return delegate.invokeAll(wrapCollection(tasks));
    }

    @Override
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException {
        return delegate.invokeAll(wrapCollection(tasks), timeout, unit);
    }

    @Override
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException {
        return delegate.invokeAny(wrapCollection(tasks));
    }

    @Override
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
        return delegate.invokeAny(wrapCollection(tasks), timeout, unit);
    }

    @Override
    public void execute(Runnable command) {
        delegate.execute(wrap(command));
    }

    public D getDelegate() {
        return delegate;
    }

    /* Copied from https://github.com/project-ncl/pnc/blob/master/common/src/main/java/org/jboss/pnc/common
    /concurrent/MDCWrappers.java */

    private static Runnable wrap(final Runnable runnable) {
        final Map<String, String> context = MDC.getCopyOfContextMap();
        return () -> {
            Map previous = MDC.getCopyOfContextMap();
            if (context == null) {
                MDC.clear();
            } else {
                MDC.setContextMap(context);
            }
            try {
                runnable.run();
            } finally {
                if (previous == null) {
                    MDC.clear();
                } else {
                    MDC.setContextMap(previous);
                }
            }
        };
    }

    private static <T> Callable<T> wrap(final Callable<T> callable) {
        final Map<String, String> context = MDC.getCopyOfContextMap();
        return () -> {
            Map previous = MDC.getCopyOfContextMap();
            if (context == null) {
                MDC.clear();
            } else {
                MDC.setContextMap(context);
            }
            try {
                return callable.call();
            } finally {
                if (previous == null) {
                    MDC.clear();
                } else {
                    MDC.setContextMap(previous);
                }
            }
        };
    }

    private static <T> Consumer<T> wrap(final Consumer<T> consumer) {
        final Map<String, String> context = MDC.getCopyOfContextMap();
        return (t) -> {
            Map previous = MDC.getCopyOfContextMap();
            if (context == null) {
                MDC.clear();
            } else {
                MDC.setContextMap(context);
            }
            try {
                consumer.accept(t);
            } finally {
                if (previous == null) {
                    MDC.clear();
                } else {
                    MDC.setContextMap(previous);
                }
            }
        };
    }

    private static <T> Collection<Callable<T>> wrapCollection(Collection<? extends Callable<T>> tasks) {
        Collection<Callable<T>> wrapped = new ArrayList<>();
        for (Callable<T> task : tasks) {
            wrapped.add(wrap(task));
        }
        return wrapped;
    }
}

Solution 8 - Java

I was able to solve this using following approach

In main thread (Application.java, my application's entry point)

static public Map<String, String> mdcContextMap = MDC.getCopyOfContextMap();

In the run method of the class that gets called by Executer

MDC.setContextMap(Application.mdcContextMap);

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionL&#243;r&#225;nt Pint&#233;rView Question on Stackoverflow
Solution 1 - JavajlevyView Answer on Stackoverflow
Solution 2 - JavaMarkView Answer on Stackoverflow
Solution 3 - JavaTomáš MyšíkView Answer on Stackoverflow
Solution 4 - JavaAmaury DView Answer on Stackoverflow
Solution 5 - JavaSonerView Answer on Stackoverflow
Solution 6 - JavaMyKey_View Answer on Stackoverflow
Solution 7 - JavaKenston ChoiView Answer on Stackoverflow
Solution 8 - JavasmishraView Answer on Stackoverflow