What exactly does `-rdynamic` do and when exactly is it needed?

CGccShared LibrariesElfDynamic Loading

C Problem Overview


What exactly does -rdynamic (or --export-dynamic at the linker level) do and how does it relate to symbol visibility as defined by the -fvisibility* flags or visibility pragmas and __attribute__s?

For --export-dynamic, ld(1) mentions:

> ... > If you use "dlopen" to load a dynamic object which needs to refer back > to the symbols defined by the program, rather than some other dynamic > object, then you will probably need > to use this option when linking the program itself. ...

I'm not sure I completely understand this. Could you please provide an example that doesn't work without -rdynamic but does with it?

Edit: I actually tried compiling a couple of dummy libraries (single file, multi-file, various -O levels, some inter-function calls, some hidden symbols, some visible), with and without -rdynamic, and so far I've been getting byte-identical outputs (when keeping all other flags constant of course), which is quite puzzling.

C Solutions


Solution 1 - C

Here is a simple example project to illustrate the use of -rdynamic.

bar.c

extern void foo(void);

void bar(void)
{
	foo();
}

main.c

#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>

void foo(void)
{
	puts("Hello world");
}

int main(void)
{
	void * dlh = dlopen("./libbar.so", RTLD_NOW);
	if (!dlh) {
		fprintf(stderr, "%s\n", dlerror());
		exit(EXIT_FAILURE);	
	}
	void (*bar)(void) = dlsym(dlh,"bar");
	if (!bar) {
		fprintf(stderr, "%s\n", dlerror());
		exit(EXIT_FAILURE);	
	}
	bar();
	return 0;
}

Makefile

.PHONY: all clean test

LDEXTRAFLAGS ?=

all: prog

bar.o: bar.c
	gcc -c -Wall -fpic -o $@ $<
	
libbar.so: bar.o
	gcc -shared -o $@ $<
	
main.o: main.c
	gcc -c -Wall -o $@ $<

prog: main.o | libbar.so
	gcc $(LDEXTRAFLAGS) -o $@ $< -L. -lbar -ldl
	
clean:
	rm -f *.o *.so prog
	
test: prog
	./$<
	

Here, bar.c becomes a shared library libbar.so and main.c becomes a program that dlopens libbar and calls bar() from that library. bar() calls foo(), which is external in bar.c and defined in main.c.

So, without -rdynamic:

$ make test
gcc -c -Wall -o main.o main.c
gcc -c -Wall -fpic -o bar.o bar.c
gcc -shared -o libbar.so bar.o
gcc  -o prog main.o -L. -lbar -ldl
./prog
./libbar.so: undefined symbol: foo
Makefile:23: recipe for target 'test' failed

And with -rdynamic:

$ make clean
rm -f *.o *.so prog
$ make test LDEXTRAFLAGS=-rdynamic
gcc -c -Wall -o main.o main.c
gcc -c -Wall -fpic -o bar.o bar.c
gcc -shared -o libbar.so bar.o
gcc -rdynamic -o prog main.o -L. -lbar -ldl
./prog
Hello world

Solution 2 - C

-rdynamic exports the symbols of an executable, this mainly addresses scenarios as described in Mike Kinghan's answer, but also it helps e.g. Glibc's backtrace_symbols() symbolizing the backtrace.

Here is a small experiment (test program copied from here)

#include <execinfo.h>                                                                                                                                                                                                                                                           
#include <stdio.h>
#include <stdlib.h>

/* Obtain a backtrace and print it to stdout. */
void
print_trace (void)
{
  void *array[10];
  size_t size;
  char **strings;
  size_t i;

  size = backtrace (array, 10);
  strings = backtrace_symbols (array, size);

  printf ("Obtained %zd stack frames.\n", size);

  for (i = 0; i < size; i++)
     printf ("%s\n", strings[i]);

  free (strings);
}

/* A dummy function to make the backtrace more interesting. */
void
dummy_function (void)
{
  print_trace (); 
}

int
main (void)
{
  dummy_function (); 
  return 0;
}

compile the program: gcc main.c and run it, the output:

Obtained 5 stack frames.
./a.out() [0x4006ca]
./a.out() [0x400761]
./a.out() [0x40076d]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0) [0x7f026597f830]
./a.out() [0x4005f9]

Now, compile with -rdynamic, i.e. gcc -rdynamic main.c, and run again:

Obtained 5 stack frames.
./a.out(print_trace+0x28) [0x40094a]
./a.out(dummy_function+0x9) [0x4009e1]
./a.out(main+0x9) [0x4009ed]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0) [0x7f85b23f2830]
./a.out(_start+0x29) [0x400879]

As you can see, we get a proper stack trace now!

Now, if we investigate ELF's symbol table entry (readelf --dyn-syms a.out):

without -rdynamic

Symbol table '.dynsym' contains 9 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND free@GLIBC_2.2.5 (2)
     2: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.2.5 (2)
     3: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND backtrace_symbols@GLIBC_2.2.5 (2)
     4: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND backtrace@GLIBC_2.2.5 (2)
     5: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __stack_chk_fail@GLIBC_2.4 (3)
     6: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@GLIBC_2.2.5 (2)
     7: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.2.5 (2)
     8: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

with -rdynamic, we have more symbols, including the executable's:

Symbol table '.dynsym' contains 25 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND free@GLIBC_2.2.5 (2)
     2: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_deregisterTMCloneTab
     3: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.2.5 (2)
     4: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND backtrace_symbols@GLIBC_2.2.5 (2)
     5: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND backtrace@GLIBC_2.2.5 (2)
     6: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __stack_chk_fail@GLIBC_2.4 (3)
     7: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@GLIBC_2.2.5 (2)
     8: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.2.5 (2)
     9: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__
    10: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_registerTMCloneTable
    11: 0000000000601060     0 NOTYPE  GLOBAL DEFAULT   24 _edata
    12: 0000000000601050     0 NOTYPE  GLOBAL DEFAULT   24 __data_start
    13: 0000000000601068     0 NOTYPE  GLOBAL DEFAULT   25 _end
    14: 00000000004009d8    12 FUNC    GLOBAL DEFAULT   14 dummy_function
    15: 0000000000601050     0 NOTYPE  WEAK   DEFAULT   24 data_start
    16: 0000000000400a80     4 OBJECT  GLOBAL DEFAULT   16 _IO_stdin_used
    17: 0000000000400a00   101 FUNC    GLOBAL DEFAULT   14 __libc_csu_init
    18: 0000000000400850    42 FUNC    GLOBAL DEFAULT   14 _start
    19: 0000000000601060     0 NOTYPE  GLOBAL DEFAULT   25 __bss_start
    20: 00000000004009e4    16 FUNC    GLOBAL DEFAULT   14 main
    21: 00000000004007a0     0 FUNC    GLOBAL DEFAULT   11 _init
    22: 0000000000400a70     2 FUNC    GLOBAL DEFAULT   14 __libc_csu_fini
    23: 0000000000400a74     0 FUNC    GLOBAL DEFAULT   15 _fini
    24: 0000000000400922   182 FUNC    GLOBAL DEFAULT   14 print_trace

I hope that helps!

Solution 3 - C

I use rdynamic to print out backtraces using the backtrace()/backtrace_symbols() of Glibc.

Without -rdynamic, you cannot get function names.

To know more about the backtrace() read it over here.

Solution 4 - C

From The Linux Programming Interface:

> 42.1.6 > > ##Accessing Symbols in the Main Program > > Suppose that we use dlopen() to dynamically load a shared library, > use dlsym() to obtain the address of a function x() from that > library, and then call x(). If x() in turn calls a function y(), > then y() would normally be sought in one of the shared libraries > loaded by the program. > > Sometimes, it is desirable instead to have x() invoke an > implementation of y() in the main program. (This is similar to a > callback mechanism.) In order to do this, we must make the > (global-scope) symbols in the main program available to the dynamic > linker, by linking the program using the --export-dynamic linker > option: > > $ gcc -Wl,--export-dynamic main.c (plus further options and > arguments) > > Equivalently, we can write the following: > > $ gcc -export-dynamic main.c > > Using either of these options allows a dynamically loaded library to > access global symbols in the main program. > > The gcc -rdynamic option and the gcc -Wl,-E option are further > > synonyms for -Wl,--export-dynamic.

I guess this only works for dynamically loaded shared library, opened with dlopen(). Correct me if I am wrong.

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionPSkocikView Question on Stackoverflow
Solution 1 - CMike KinghanView Answer on Stackoverflow
Solution 2 - CY.H.View Answer on Stackoverflow
Solution 3 - Cdeep_rugsView Answer on Stackoverflow
Solution 4 - CRickView Answer on Stackoverflow