Object spread vs. Object.assign

JavascriptEcmascript 6

Javascript Problem Overview


Let’s say I have an options variable and I want to set some default value.

What’s is the benefit / drawback of these two alternatives?

Using object spread

options = {...optionsDefault, ...options};

Or using Object.assign

options = Object.assign({}, optionsDefault, options);

This is the commit that made me wonder.

Javascript Solutions


Solution 1 - Javascript

This isn't necessarily exhaustive.

Spread syntax

options = {...optionsDefault, ...options};
Advantages:
  • If authoring code for execution in environments without native support, you may be able to just compile this syntax (as opposed to using a polyfill). (With Babel, for example.)

  • Less verbose.

Disadvantages:
  • When this answer was originally written, this was a proposal, not standardized. When using proposals consider what you'd do if you write code with it now and it doesn't get standardized or changes as it moves toward standardization. This has since been standardized in ES2018.

  • Literal, not dynamic.


Object.assign()

options = Object.assign({}, optionsDefault, options);
Advantages:
  • Standardized.

  • Dynamic. Example:

      var sources = [{a: "A"}, {b: "B"}, {c: "C"}];
      options = Object.assign.apply(Object, [{}].concat(sources));
      // or
      options = Object.assign({}, ...sources);
    
Disadvantages:
  • More verbose.
  • If authoring code for execution in environments without native support you need to polyfill.

> This is the commit that made me wonder.

That's not directly related to what you're asking. That code wasn't using Object.assign(), it was using user code (object-assign) that does the same thing. They appear to be compiling that code with Babel (and bundling it with Webpack), which is what I was talking about: the syntax you can just compile. They apparently preferred that to having to include object-assign as a dependency that would go into their build.

Solution 2 - Javascript

For reference object rest/spread is finalised in ECMAScript 2018 as a stage 4. The proposal can be found here.

For the most part object assign and spread work the same way, the key difference is that spread defines properties, whilst Object.assign() sets them. This means Object.assign() triggers setters.

It's worth remembering that other than this, object rest/spread 1:1 maps to Object.assign() and acts differently to array (iterable) spread. For example, when spreading an array null values are spread. However using object spread null values are silently spread to nothing.

Array (Iterable) Spread Example

const x = [1, 2, null , 3];
const y = [...x, 4, 5];
const z = null;

console.log(y); // [1, 2, null, 3, 4, 5];
console.log([...z]); // TypeError

Object Spread Example

const x = null;
const y = {a: 1, b: 2};
const z = {...x, ...y};

console.log(z); //{a: 1, b: 2}

This is consistent with how Object.assign() would work, both silently exclude the null value with no error.

const x = null;
const y = {a: 1, b: 2};
const z = Object.assign({}, x, y);

console.log(z); //{a: 1, b: 2}

Solution 3 - Javascript

I think one big difference between the spread operator and Object.assign that doesn't seem to be mentioned in the current answers is that the spread operator will not copy the the source object’s prototype to the target object. If you want to add properties to an object and you don't want to change what instance it is of, then you will have to use Object.assign.

Edit: I've actually realised that my example is misleading. The spread operator desugars to Object.assign with the first parameter set to an empty object. In my code example below, I put error as the first parameter of the Object.assign call so the two are not equivalent. The first parameter of Object.assign is actually modified and then returned which is why it retains its prototype. I have added another example below:

const error = new Error();
error instanceof Error // true

const errorExtendedUsingSpread = {
  ...error,
  ...{
    someValue: true
  }
};
errorExtendedUsingSpread instanceof Error; // false

// What the spread operator desugars into
const errorExtendedUsingImmutableObjectAssign = Object.assign({}, error, {
    someValue: true
});
errorExtendedUsingImmutableObjectAssign instanceof Error; // false

// The error object is modified and returned here so it keeps its prototypes
const errorExtendedUsingAssign = Object.assign(error, {
  someValue: true
});
errorExtendedUsingAssign instanceof Error; // true

See also: https://github.com/tc39/proposal-object-rest-spread/blob/master/Spread.md

Solution 4 - Javascript

NOTE: Spread is NOT just syntactic sugar around Object.assign. They operate much differently behind the scenes.

Object.assign applies setters to a new object, Spread does not. In addition, the object must be iterable.

Copy Use this if you need the value of the object as it is at this moment, and you don't want that value to reflect any changes made by other owners of the object.

Use it for creating a shallow copy of the object good practice to always set immutable properties to copy - because mutable versions can be passed into immutable properties, copy will ensure that you'll always be dealing with an immutable object

Assign Assign is somewhat the opposite to copy. Assign will generate a setter which assigns the value to the instance variable directly, rather than copying or retaining it. When calling the getter of an assign property, it returns a reference to the actual data.

Solution 5 - Javascript

I'd like to summarize status of the "spread object merge" ES feature, in browsers, and in the ecosystem via tools.

Spec

Browsers: in Chrome, in SF, Firefox soon (ver 60, IIUC)

  • Browser support for "spread properties" shipped in Chrome 60, including this scenario.
  • Support for this scenario does NOT work in current Firefox (59), but DOES work in my Firefox Developer Edition. So I believe it will ship in Firefox 60.
  • Safari: not tested, but Kangax says it works in Desktop Safari 11.1, but not SF 11
  • iOS Safari: not teseted, but Kangax says it works in iOS 11.3, but not in iOS 11
  • not in Edge yet

Tools: Node 8.7, TS 2.1

Code Sample (doubles as compatibility test)

var x = { a: 1, b: 2 };
var y = { c: 3, d: 4, a: 5 };
var z = {...x, ...y};
console.log(z); // { a: 5, b: 2, c: 3, d: 4 }

Again: At time of writing this sample works without transpilation in Chrome (60+), Firefox Developer Edition (preview of Firefox 60), and Node (8.7+).

Why Answer?

I'm writing this 2.5 years after the original question. But I had the very same question, and this is where Google sent me. I am a slave to SO's mission to improve the long tail.

Since this is an expansion of "array spread" syntax I found it very hard to google, and difficult to find in compatibility tables. The closest I could find is Kangax "property spread", but that test doesn't have two spreads in the same expression (not a merge). Also, the name in the proposals/drafts/browser status pages all use "property spread", but it looks to me like that was a "first principal" the community arrived at after the proposals to use spread syntax for "object merge". (Which might explain why it is so hard to google.) So I document my finding here so others can view, update, and compile links about this specific feature. I hope it catches on. Please help spread the news of it landing in the spec and in browsers.

Lastly, I would have added this info as a comment, but I couldn't edit them without breaking the authors' original intent. Specifically, I can't edit @ChillyPenguin's comment without it losing his intent to correct @RichardSchulte. But years later Richard turned out to be right (in my opinion). So I write this answer instead, hoping it will gain traction on the old answers eventually (might take years, but that's what the long tail effect is all about, after all).

Solution 6 - Javascript

As others have mentioned, at this moment of writing, Object.assign() requires a polyfill and object spread ... requires some transpiling (and perhaps a polyfill too) in order to work.

Consider this code:

// Babel wont touch this really, it will simply fail if Object.assign() is not supported in browser.
const objAss = { message: 'Hello you!' };
const newObjAss = Object.assign(objAss, { dev: true });
console.log(newObjAss);

// Babel will transpile with use to a helper function that first attempts to use Object.assign() and then falls back.
const objSpread = { message: 'Hello you!' };
const newObjSpread = {...objSpread, dev: true };
console.log(newObjSpread);

These both produce the same output.

Here is the output from Babel, to ES5:

var objAss = { message: 'Hello you!' };
var newObjAss = Object.assign(objAss, { dev: true });
console.log(newObjAss);

var _extends = Object.assign || function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; };

var objSpread = { message: 'Hello you!' };
var newObjSpread = _extends({}, objSpread, { dev: true });
console.log(newObjSpread);

This is my understanding so far. Object.assign() is actually standardised, where as object spread ... is not yet. The only problem is browser support for the former and in future, the latter too.

Play with the code here

Hope this helps.

Solution 7 - Javascript

The object spread operator (...) doesn't work in browsers, because it isn't part of any ES specification yet, just a proposal. The only option is to compile it with Babel (or something similar).

As you can see, it's just syntactic sugar over Object.assign({}).

As far as I can see, these are the important differences.

Object.assign works in most browsers (without compiling)

... for objects isn't standardized

  • ... protects you from accidentally mutating the object
  • ... will polyfill Object.assign in browsers without it
  • ... needs less code to express the same idea

Solution 8 - Javascript

Other answers are old, could not get a good answer.
Below example is for object literals, helps how both can complement each other, and how it cannot complement each other (therefore difference):

var obj1 = { a: 1,  b: { b1: 1, b2: 'b2value', b3: 'b3value' } };

// overwrite parts of b key
var obj2 = {
      b: {
        ...obj1.b,
        b1: 2
      }
};
var res2 = Object.assign({}, obj1, obj2); // b2,b3 keys still exist
document.write('res2: ', JSON.stringify (res2), '<br>');
// Output:
// res2: {"a":1,"b":{"b1":2,"b2":"b2value","b3":"b3value"}}  // NOTE: b2,b3 still exists

// overwrite whole of b key
var obj3 = {
      b: {
        b1: 2
      }
};
var res3 = Object.assign({}, obj1, obj3); // b2,b3 keys are lost
document.write('res3: ', JSON.stringify (res3), '<br>');
// Output:
  // res3: {"a":1,"b":{"b1":2}}  // NOTE: b2,b3 values are lost

Several more small examples here, also for array & object:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

Solution 9 - Javascript

This is now part of ES6, thus is standardized, and is also documented on MDN: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator

It's very convenient to use and makes a lot of sense alongside object destructuring.

The one remaining advantage listed above is the dynamic capabilities of Object.assign(), however this is as easy as spreading the array inside of a literal object. In the compiled babel output it uses exactly what is demonstrated with Object.assign()

So the correct answer would be to use object spread since it is now standardized, widely used (see react, redux, etc), is easy to use, and has all the features of Object.assign()

Solution 10 - Javascript

Object.assign is necessary when the target object is a constant and you want to set multiple properties at once.

For example:

const target = { data: "Test", loading: true }

Now, suppose you need to mutate the target with all properties from a source:

const source = { data: null, loading: false, ...etc }

Object.assign(target, source) // Now target is updated
target = { ...target, ...source) // Error: cant assign to constant

Keep in mind that you are mutating the target obj, so whenever possible use Object.assign with empty target or spread to assign to a new obj.

Solution 11 - Javascript

There's a huge difference between the two, with very serious consequences. The most upvoted questions do not even touch this, and the information about object spread being a proposal is not relevant in 2022 anymore.

The difference is that Object.assign changes the object in-place, while the spread operator (...) creates a brand new object, and this will break object reference equality.

First, let's see the effect, and then I'll give a real-world example of how important it is to understand this fundamental difference.

First, let's use Object.assign:

// Let's create a new object, that contains a child object;
const parentObject = { childObject: { hello: 'world '} };

// Let's get a reference to the child object;
const childObject = parentObject.childObject;

// Let's change the child object using Object.assign, adding a new `foo` key with `bar` value;
Object.assign(parentObject.childObject, { foo: 'bar' });

// childObject is still the same object in memory, it was changed IN PLACE.
parentObject.childObject === childObject
// true

Now the same exercise with the spread operator:

// Let's create a new object, that contains a child object;
const parentObject = { childObject: { hello: 'world '} };

// Let's get a reference to the child object;
const childObject = parentObject.childObject;

// Let's change the child object using the spread operator;
parentObject.childObject = {
  ...parentObject.childObject,
  foo: 'bar',
}

// They are not the same object in memory anymore!
parentObject.childObject === childObject;
// false

It's easy to see what is going on, because on the parentObject.childObject = {...} we are cleary assigning the value of the childObject key in parentObject to a brand new object literal, and the fact it's being composed by the old childObject content's is irrelevant. It's a new object.

And if you assume this is irrelevant in practice, let me show a real world scenario of how important it is to understand this.

In a very large Vue.js application, we started noticing a lot of sluggishness when typing the name of the customer in an input field.

After a lot of debugging, we found out that each char typed in that input triggered a hole bunch of computed properties to re-evaluate.

This wasn't anticipated, since the customer's name wasn't used at all in those computeds functions. Only other customer data (like age, sex) was being used. What was goin on? Why was vue re-evaluating all those computed functions when the customer's name changed?

Well, we had a Vuex store that did this:

mutations: {
  setCustomer(state, payload) {
    state.customer = { ...state.customer, ...payload };
  }

And our computed were like this:

veryExpensiveComputed() {
   const customerAge = this.$store.state.customer.age;
}

So, voilá! When the customer name changed, the Vuex mutation was actually changing it to a new object entirely; and since the computed relied on that object to get the customer age, Vue counted on that very specific object instance as a dependency, and when it was changed to a new object (failing the === object equality test), Vue decided it was time to re-run the computed function.

The fix? Use Object.assign to not discard the previous object, but to change it in place ...

mutations: {
  setCustomer(state, payload) {
    Object.assign(state.customer, payload);
  }

BTW, if you are in Vue2, you shouldn't use Object.assign because Vue 2 can't track those object changes directly, but the same logic applies, just using Vue.set instead of Object.assign:

mutations: {
  setCustomer(state, payload) {
    Object.keys(payload).forEach(key => {
      Vue.set(state.customer, key, payload[key])
    })
  }

Solution 12 - Javascript

I'd like to add this simple example when you have to use Object.assign.

class SomeClass {
  constructor() {
    this.someValue = 'some value';
  }

  someMethod() {
    console.log('some action');
  }
}


const objectAssign = Object.assign(new SomeClass(), {});
objectAssign.someValue; // ok
objectAssign.someMethod(); // ok

const spread = {...new SomeClass()};
spread.someValue; // ok
spread.someMethod(); // there is no methods of SomeClass!

It can be not clear when you use JavaScript. But with TypeScript it is easier if you want to create instance of some class

const spread: SomeClass = {...new SomeClass()} // Error

Solution 13 - Javascript

The ways to (1) create shallow copies of objects and (2) merge multiple objects into a single object have evolved a lot between 2014 and 2018.

The approaches outlined below became available and widely used at different times. This answer provides some historical perspective and is not exhaustive.

  • Without any help from libraries or modern syntax, you would use for-in loops, e.g.

    var mergedOptions = {}
    for (var key in defaultOptions) {
      mergedOptions[key] = defaultOptions[key]
    }
    for (var key in options) {
      mergedOptions[key] = options[key]
    }
    
    options = mergedOptions
    

2006

  • jQuery 1.0 has jQuery.extend():

    options = $.extend({}, defaultOptions, options)
    

2010

2014

2015

  • Object.assign is supported by Chrome (45), Firefox (34) and Node.js (4). Polyfill is required for older runtimes though.

    options = Object.assign({}, defaultOptions, options)
    
  • The Object Rest/Spread Properties proposal reaches stage 2.

2016

  • The Object Rest/Spread Properties syntax did not get included in ES2016, but proposal reaches stage 3.

2017

  • The Object Rest/Spread Properties syntax did not get included in ES2017, but is usable in Chrome (60), Firefox (55), and Node.js (8.3). Some transpilation is needed for older runtimes though.

    options = { ...defaultOptions, ...options }
    

2018

  • The Object Rest/Spread Properties proposal reaches stage 4 and the syntax is included in ES2018 standard.

Solution 14 - Javascript

The spread operator spread the Array into the separate arguments of a function.

let iterableObjB = [1,2,3,4]
function (...iterableObjB)  //turned into
function (1,2,3,4)

Solution 15 - Javascript

We’ll create a function called identity that just returns whatever parameter we give it.

identity = (arg) => arg

And a simple array.

arr = [1, 2, 3]

If you call identity with arr, we know what’ll happen

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionOlivier TassinariView Question on Stackoverflow
Solution 1 - JavascriptJMMView Answer on Stackoverflow
Solution 2 - JavascripttomhughesView Answer on Stackoverflow
Solution 3 - JavascriptSean DawsonView Answer on Stackoverflow
Solution 4 - JavascriptCharles OwenView Answer on Stackoverflow
Solution 5 - JavascriptyzorgView Answer on Stackoverflow
Solution 6 - JavascriptMichael Giovanni PumoView Answer on Stackoverflow
Solution 7 - JavascriptKarthick KumarView Answer on Stackoverflow
Solution 8 - JavascriptManohar Reddy PoreddyView Answer on Stackoverflow
Solution 9 - JavascriptRikki SchulteView Answer on Stackoverflow
Solution 10 - JavascriptFernandoView Answer on Stackoverflow
Solution 11 - Javascriptsandre89View Answer on Stackoverflow
Solution 12 - JavascriptzemilView Answer on Stackoverflow
Solution 13 - JavascriptThaiView Answer on Stackoverflow
Solution 14 - JavascriptShaik Md N RasoolView Answer on Stackoverflow
Solution 15 - Javascriptb devidView Answer on Stackoverflow