How to split data into 3 sets (train, validation and test)?

PandasNumpyDataframeMachine LearningScikit Learn

Pandas Problem Overview


I have a pandas dataframe and I wish to divide it to 3 separate sets. I know that using train_test_split from sklearn.cross_validation, one can divide the data in two sets (train and test). However, I couldn't find any solution about splitting the data into three sets. Preferably, I'd like to have the indices of the original data.

I know that a workaround would be to use train_test_split two times and somehow adjust the indices. But is there a more standard / built-in way to split the data into 3 sets instead of 2?

Pandas Solutions


Solution 1 - Pandas

Numpy solution. We will shuffle the whole dataset first (df.sample(frac=1, random_state=42)) and then split our data set into the following parts:

  • 60% - train set,
  • 20% - validation set,
  • 20% - test set

In [305]: train, validate, test = \
              np.split(df.sample(frac=1, random_state=42), 
                       [int(.6*len(df)), int(.8*len(df))])

In [306]: train
Out[306]:
          A         B         C         D         E
0  0.046919  0.792216  0.206294  0.440346  0.038960
2  0.301010  0.625697  0.604724  0.936968  0.870064
1  0.642237  0.690403  0.813658  0.525379  0.396053
9  0.488484  0.389640  0.599637  0.122919  0.106505
8  0.842717  0.793315  0.554084  0.100361  0.367465
7  0.185214  0.603661  0.217677  0.281780  0.938540

In [307]: validate
Out[307]:
          A         B         C         D         E
5  0.806176  0.008896  0.362878  0.058903  0.026328
6  0.145777  0.485765  0.589272  0.806329  0.703479

In [308]: test
Out[308]:
          A         B         C         D         E
4  0.521640  0.332210  0.370177  0.859169  0.401087
3  0.333348  0.964011  0.083498  0.670386  0.169619

[int(.6*len(df)), int(.8*len(df))] - is an indices_or_sections array for numpy.split().

Here is a small demo for np.split() usage - let's split 20-elements array into the following parts: 80%, 10%, 10%:

In [45]: a = np.arange(1, 21)

In [46]: a
Out[46]: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

In [47]: np.split(a, [int(.8 * len(a)), int(.9 * len(a))])
Out[47]:
[array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16]),
 array([17, 18]),
 array([19, 20])]

Solution 2 - Pandas

However, one approach to dividing the dataset into train, test, cv with 0.6, 0.2, 0.2 would be to use the train_test_split method twice.

from sklearn.model_selection import train_test_split

x, x_test, y, y_test = train_test_split(xtrain,labels,test_size=0.2,train_size=0.8)
x_train, x_cv, y_train, y_cv = train_test_split(x,y,test_size = 0.25,train_size =0.75)

Solution 3 - Pandas

Note:

Function was written to handle seeding of randomized set creation. You should not rely on set splitting that doesn't randomize the sets.

import numpy as np
import pandas as pd

def train_validate_test_split(df, train_percent=.6, validate_percent=.2, seed=None):
    np.random.seed(seed)
    perm = np.random.permutation(df.index)
    m = len(df.index)
    train_end = int(train_percent * m)
    validate_end = int(validate_percent * m) + train_end
    train = df.iloc[perm[:train_end]]
    validate = df.iloc[perm[train_end:validate_end]]
    test = df.iloc[perm[validate_end:]]
    return train, validate, test
Demonstration
np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(10, 5), columns=list('ABCDE'))
df

enter image description here

train, validate, test = train_validate_test_split(df)

train

enter image description here

validate

enter image description here

test

enter image description here

Solution 4 - Pandas

Here is a Python function that splits a Pandas dataframe into train, validation, and test dataframes with stratified sampling. It performs this split by calling scikit-learn's function train_test_split() twice.

import pandas as pd
from sklearn.model_selection import train_test_split

def split_stratified_into_train_val_test(df_input, stratify_colname='y',
                                         frac_train=0.6, frac_val=0.15, frac_test=0.25,
                                         random_state=None):
    '''
    Splits a Pandas dataframe into three subsets (train, val, and test)
    following fractional ratios provided by the user, where each subset is
    stratified by the values in a specific column (that is, each subset has
    the same relative frequency of the values in the column). It performs this
    splitting by running train_test_split() twice.

    Parameters
    ----------
    df_input : Pandas dataframe
        Input dataframe to be split.
    stratify_colname : str
        The name of the column that will be used for stratification. Usually
        this column would be for the label.
    frac_train : float
    frac_val   : float
    frac_test  : float
        The ratios with which the dataframe will be split into train, val, and
        test data. The values should be expressed as float fractions and should
        sum to 1.0.
    random_state : int, None, or RandomStateInstance
        Value to be passed to train_test_split().

    Returns
    -------
    df_train, df_val, df_test :
        Dataframes containing the three splits.
    '''

    if frac_train + frac_val + frac_test != 1.0:
        raise ValueError('fractions %f, %f, %f do not add up to 1.0' % \
                         (frac_train, frac_val, frac_test))

    if stratify_colname not in df_input.columns:
        raise ValueError('%s is not a column in the dataframe' % (stratify_colname))

    X = df_input # Contains all columns.
    y = df_input[[stratify_colname]] # Dataframe of just the column on which to stratify.

    # Split original dataframe into train and temp dataframes.
    df_train, df_temp, y_train, y_temp = train_test_split(X,
                                                          y,
                                                          stratify=y,
                                                          test_size=(1.0 - frac_train),
                                                          random_state=random_state)

    # Split the temp dataframe into val and test dataframes.
    relative_frac_test = frac_test / (frac_val + frac_test)
    df_val, df_test, y_val, y_test = train_test_split(df_temp,
                                                      y_temp,
                                                      stratify=y_temp,
                                                      test_size=relative_frac_test,
                                                      random_state=random_state)

    assert len(df_input) == len(df_train) + len(df_val) + len(df_test)

    return df_train, df_val, df_test

Below is a complete working example.

Consider a dataset that has a label upon which you want to perform the stratification. This label has its own distribution in the original dataset, say 75% foo, 15% bar and 10% baz. Now let's split the dataset into train, validation, and test into subsets using a 60/20/20 ratio, where each split retains the same distribution of the labels. See the illustration below:

enter image description here

Here is the example dataset:

df = pd.DataFrame( { 'A': list(range(0, 100)),
                     'B': list(range(100, 0, -1)),
                     'label': ['foo'] * 75 + ['bar'] * 15 + ['baz'] * 10 } )

df.head()
#    A    B label
# 0  0  100   foo
# 1  1   99   foo
# 2  2   98   foo
# 3  3   97   foo
# 4  4   96   foo

df.shape
# (100, 3)

df.label.value_counts()
# foo    75
# bar    15
# baz    10
# Name: label, dtype: int64

Now, let's call the split_stratified_into_train_val_test() function from above to get train, validation, and test dataframes following a 60/20/20 ratio.

df_train, df_val, df_test = \
    split_stratified_into_train_val_test(df, stratify_colname='label', frac_train=0.60, frac_val=0.20, frac_test=0.20)

The three dataframes df_train, df_val, and df_test contain all the original rows but their sizes will follow the above ratio.

df_train.shape
#(60, 3)

df_val.shape
#(20, 3)

df_test.shape
#(20, 3)

Further, each of the three splits will have the same distribution of the label, namely 75% foo, 15% bar and 10% baz.

df_train.label.value_counts()
# foo    45
# bar     9
# baz     6
# Name: label, dtype: int64

df_val.label.value_counts()
# foo    15
# bar     3
# baz     2
# Name: label, dtype: int64

df_test.label.value_counts()
# foo    15
# bar     3
# baz     2
# Name: label, dtype: int64

Solution 5 - Pandas

In the case of supervised learning, you may want to split both X and y (where X is your input and y the ground truth output). You just have to pay attention to shuffle X and y the same way before splitting.

Here, either X and y are in the same dataframe, so we shuffle them, separate them and apply the split for each (just like in chosen answer), or X and y are in two different dataframes, so we shuffle X, reorder y the same way as the shuffled X and apply the split to each.

# 1st case: df contains X and y (where y is the "target" column of df)
df_shuffled = df.sample(frac=1)
X_shuffled = df_shuffled.drop("target", axis = 1)
y_shuffled = df_shuffled["target"]

# 2nd case: X and y are two separated dataframes
X_shuffled = X.sample(frac=1)
y_shuffled = y[X_shuffled.index]

# We do the split as in the chosen answer
X_train, X_validation, X_test = np.split(X_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
y_train, y_validation, y_test = np.split(y_shuffled, [int(0.6*len(X)),int(0.8*len(X))])

Solution 6 - Pandas

It is very convenient to use train_test_split without performing reindexing after dividing to several sets and not writing some additional code. Best answer above does not mention that by separating two times using train_test_split not changing partition sizes won`t give initially intended partition:

x_train, x_remain = train_test_split(x, test_size=(val_size + test_size))

Then the portion of validation and test sets in the x_remain change and could be counted as

new_test_size = np.around(test_size / (val_size + test_size), 2)
# To preserve (new_test_size + new_val_size) = 1.0 
new_val_size = 1.0 - new_test_size

x_val, x_test = train_test_split(x_remain, test_size=new_test_size)

In this occasion all initial partitions are saved.

Solution 7 - Pandas

def train_val_test_split(X, y, train_size, val_size, test_size):
    X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size = test_size)
    relative_train_size = train_size / (val_size + train_size)
    X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val,
                                                      train_size = relative_train_size, test_size = 1-relative_train_size)
    return X_train, X_val, X_test, y_train, y_val, y_test

Here we split data 2 times with sklearn's train_test_split

Solution 8 - Pandas

Considering that df id your original dataframe:

1 - First you split data between Train and Test (10%):

my_test_size = 0.10

X_train_, X_test, y_train_, y_test = train_test_split(
    df.index.values,
    df.label.values,
    test_size=my_test_size,
    random_state=42,
    stratify=df.label.values,    
)

2 - Then you split the train set between train and validation (20%):

my_val_size = 0.20

X_train, X_val, y_train, y_val = train_test_split(
    df.loc[X_train_].index.values,
    df.loc[X_train_].label.values,
    test_size=my_val_size,
    random_state=42,
    stratify=df.loc[X_train_].label.values,  
)

3 - Then, you slice the original dataframe according to the indices generated in the steps above:

# data_type is not necessary. 
df['data_type'] = ['not_set']*df.shape[0]
df.loc[X_train, 'data_type'] = 'train'
df.loc[X_val, 'data_type'] = 'val'
df.loc[X_test, 'data_type'] = 'test'

The result is going to be like this:

enter image description here

Note: This soluctions uses the workaround mentioned in the question.

Solution 9 - Pandas

ANSWER FOR ANY AMOUNT OF SUB-SETS:

def _separate_dataset(patches, label_patches, percentage, shuffle: bool = True):
    """
    :param patches: data patches
    :param label_patches: label patches
    :param percentage: list of percentages for each value, example [0.9, 0.02, 0.08] to get 90% train, 2% val and 8% test.
    :param shuffle: Shuffle dataset before split.
    :return: tuple of two lists of size = len(percentage), one with data x and other with labels y.
    """
    x_test = patches
    y_test = label_patches
    percentage = list(percentage)       # need it to be mutable
    assert sum(percentage) == 1., f"percentage must add to 1, but it adds to sum{percentage} = {sum(percentage)}"
    x = []
    y = []
    for i, per in enumerate(percentage[:-1]):
        x_train, x_test, y_train, y_test = train_test_split(x_test, y_test, test_size=1-per, shuffle=shuffle)
        percentage[i+1:] = [value / (1-percentage[i]) for value in percentage[i+1:]]
        x.append(x_train)
        y.append(y_train)
    x.append(x_test)
    y.append(y_test)
    return x, y

This work for any size of percentage. In your case, you should do percentage = [train_percentage, val_percentage, test_percentage].

Solution 10 - Pandas

The easiest way that I could think of is mapping split fractions to array index as follows:

train_set = data[:int((len(data)+1)*train_fraction)]
test_set = data[int((len(data)+1)*train_fraction):int((len(data)+1)*(train_fraction+test_fraction))]
val_set = data[int((len(data)+1)*(train_fraction+test_fraction)):]

where data = random.shuffle(data)

Solution 11 - Pandas

Split the dataset in training and testing set as in the other answers, using

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Then, if you fit your model, you can add validation_split as a parameter. Then you do not need to create the validation set in advance. For example:

from tensorflow.keras import Model

model = Model(input_layer, out)

[...]

history = model.fit(x=X_train, y=y_train, [...], validation_split = 0.3)

The validation set is meant to serve as a representative on-the-run-testing-set during training of the training set, taken entirely from the training set, be it by k-fold cross-validation (recommended) or by validation_split; then you do not need to create a validation set separately and still you split a dataset into the three sets you are asking for.

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionCentAuView Question on Stackoverflow
Solution 1 - PandasMaxU - stop genocide of UAView Answer on Stackoverflow
Solution 2 - Pandasblitu12345View Answer on Stackoverflow
Solution 3 - PandaspiRSquaredView Answer on Stackoverflow
Solution 4 - Pandasstackoverflowuser2010View Answer on Stackoverflow
Solution 5 - PandasKenView Answer on Stackoverflow
Solution 6 - PandasA.AmetovView Answer on Stackoverflow
Solution 7 - PandasdogukanakgolView Answer on Stackoverflow
Solution 8 - PandasGiovaniView Answer on Stackoverflow
Solution 9 - PandasAgustin BarrachinaView Answer on Stackoverflow
Solution 10 - PandasCoddyView Answer on Stackoverflow
Solution 11 - Pandasquestionto42standswithUkraineView Answer on Stackoverflow