How to compare values of generic types?

C#.NetGenericsIcomparable

C# Problem Overview


How do I compare values of generic types?

I have reduced it to a minimal sample:

public class Foo<T> where T : IComparable
{
    private T _minimumValue = default(T);

    public bool IsInRange(T value) 
    {
        return (value >= _minimumValue); // <-- Error here
    }
}

The error is:

>Operator '>=' cannot be applied to operands of type 'T' and 'T'.

What on earth!? T is already constrained to IComparable, and even when constraining it to value types (where T: struct), we still can't apply any of the operators <, >, <=, >=, == or !=. (I know that workarounds involving Equals() exist for == and !=, but it doesn't help for the relational operators).

So, two questions:

  1. Why do we observe this weird behaviour? What keeps us from comparing the values of generic types which are known to be IComparable? Doesn't it somehow defeat the entire purpose of generic constraints?
  2. How do I resolve this, or at least work around it?

(I realize there are already a handful of questions related to this seemingly simple problem - but none of the threads gives an exhaustive or workable answer, so here.)

C# Solutions


Solution 1 - C#

IComparable doesn't overload the >= operator. You should use

value.CompareTo(_minimumValue) >= 0

Solution 2 - C#

If value can be null the current answer could fail. Use something like this instead:

Comparer<T>.Default.Compare(value, _minimumValue) >= 0

Solution 3 - C#

Problem with operator overloading

Unfortunately, interfaces cannot contain overloaded operators. Try typing this in your compiler:

public interface IInequalityComaparable<T>
{
    bool operator >(T lhs, T rhs);
    bool operator >=(T lhs, T rhs);
    bool operator <(T lhs, T rhs);
    bool operator <=(T lhs, T rhs);
}

I don't know why they didn't allow this, but I'm guessing it complicated the language definition, and would be hard for users to implement correctly.

Either that, or the designers didn't like the potential for abuse. For example, imagine doing a >= compare on a class MagicMrMeow. Or even on a class Matrix<T>. What does the result mean about the two values?; Especially when there could be an ambiguity?

The official work-around

Since the above interface isn't legal, we have the IComparable<T> interface to work around the problem. It implements no operators, and exposes only one method, int CompareTo(T other);

See http://msdn.microsoft.com/en-us/library/4d7sx9hd.aspx

The int result is actually a tri-bit, or a tri-nary (similar to a Boolean, but with three states). This table explains the meaning of the results:

Value              Meaning

Less than zero     This object is less than
                   the object specified by the CompareTo method.

Zero               This object is equal to the method parameter.

Greater than zero  This object is greater than the method parameter.

Using the work-around

In order to do the equivalent of value >= _minimumValue, you must instead write:

value.CompareTo(_minimumValue) >= 0

Solution 4 - C#

public bool IsInRange(T value) 
{
    return (value.CompareTo(_minimumValue) >= 0);
}

When working with IComparable generics, all less than/greater than operators need to be converted to calls to CompareTo. Whatever operator you would use, keep the values being compared in the same order, and compare against zero. ( x <op> y becomes x.CompareTo(y) <op> 0, where <op> is >, >=, etc.)

Also, I'd recommend that the generic constraint you use be where T : IComparable<T>. IComparable by itself means that the object can be compared against anything, comparing an object against others of the same type is probably more appropriate.

Solution 5 - C#

Instead of value >= _minimValue use Comparer class:

public bool IsInRange(T value ) {
    var result = Comparer<T>.Default.Compare(value, _minimumValue);
    if ( result >= 0 ) { return true; }
    else { return false; }
}

Solution 6 - C#

As others have stated, one needs to explicitly use the CompareTo method. The reason that one cannot use interfaces with operators is that it is possible for a class to implement an arbitrary number of interfaces, with no clear ranking among them. Suppose one tried to compute the expression "a = foo + 5;" when foo implemented six interfaces all of which define an operator "+" with an integer second argument; which interface should be used for the operator?

The fact that classes can derive multiple interfaces makes interfaces very powerful. Unfortunately, it often forces one to be more explicit about what one actually wants to do.

Solution 7 - C#

IComparable only forces a function called CompareTo(). So you cannot apply any of the operators that you have mentioned

Solution 8 - C#

I was able to use Peter Hedburg's answer to create some overloaded extension methods for generics. Note that the CompareTo method doesn't work here, as type T is unknown and doesn't present that interface. That said, I'm interested in seeing any alternatives.

I would like to have posted in C#, but Telerik's converter fails on this code. I'm not familiar enough with C# to reliably convert it manually. If someone would like to do the honors, I'd be pleased to see this edited accordingly.

<Extension>
<DebuggerStepThrough>
Public Sub RemoveDuplicates(Of T)(Instance As List(Of T))
  Instance.RemoveDuplicates(Function(X, Y) Comparer(Of T).Default.Compare(X, Y))
End Sub



<Extension>
<DebuggerStepThrough>
Public Sub RemoveDuplicates(Of T)(Instance As List(Of T), Comparison As Comparison(Of T))
  Instance.RemoveDuplicates(New List(Of Comparison(Of T)) From {Comparison})
End Sub



<Extension>
<DebuggerStepThrough>
Public Sub RemoveDuplicates(Of T)(Instance As List(Of T), Comparisons As List(Of Comparison(Of T)))
  Dim oResults As New List(Of Boolean)

  For i As Integer = 0 To Instance.Count - 1
    For j As Integer = Instance.Count - 1 To i + 1 Step -1
      oResults.Clear()

      For Each oComparison As Comparison(Of T) In Comparisons
        oResults.Add(oComparison(Instance(i), Instance(j)) = 0)
      Next oComparison

      If oResults.Any(Function(R) R) Then
        Instance.RemoveAt(j)
      End If
    Next j
  Next i
End Sub

--EDIT--

I was able to clean this up by constraining T to IComparable(Of T) on all methods, as indicated by OP. Note that this constraint requires type T to implement IComparable(Of <type>) as well.

<Extension>
<DebuggerStepThrough>
Public Sub RemoveDuplicates(Of T As IComparable(Of T))(Instance As List(Of T))
  Instance.RemoveDuplicates(Function(X, Y) X.CompareTo(Y))
End Sub

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestiongsterckenView Question on Stackoverflow
Solution 1 - C#faesterView Answer on Stackoverflow
Solution 2 - C#Peter HedbergView Answer on Stackoverflow
Solution 3 - C#Merlyn Morgan-GrahamView Answer on Stackoverflow
Solution 4 - C#David YawView Answer on Stackoverflow
Solution 5 - C#TcKsView Answer on Stackoverflow
Solution 6 - C#supercatView Answer on Stackoverflow
Solution 7 - C#parapura rajkumarView Answer on Stackoverflow
Solution 8 - C#InteXXView Answer on Stackoverflow