Find the most common element in a list

PythonList

Python Problem Overview


What is an efficient way to find the most common element in a Python list?

My list items may not be hashable so can't use a dictionary. Also in case of draws the item with the lowest index should be returned. Example:

>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'

Python Solutions


Solution 1 - Python

A simpler one-liner:

def most_common(lst):
    return max(set(lst), key=lst.count)

Solution 2 - Python

Borrowing from here, this can be used with Python 2.7:

from collections import Counter

def Most_Common(lst):
    data = Counter(lst)
    return data.most_common(1)[0][0]

Works around 4-6 times faster than Alex's solutions, and is 50 times faster than the one-liner proposed by newacct.

To retrieve the element that occurs first in the list in case of ties:

def most_common(lst):
    data = Counter(lst)
    return max(lst, key=data.get)

Solution 3 - Python

With so many solutions proposed, I'm amazed nobody's proposed what I'd consider an obvious one (for non-hashable but comparable elements) -- [itertools.groupby][1]. itertools offers fast, reusable functionality, and lets you delegate some tricky logic to well-tested standard library components. Consider for example:

import itertools
import operator

def most_common(L):
  # get an iterable of (item, iterable) pairs
  SL = sorted((x, i) for i, x in enumerate(L))
  # print 'SL:', SL
  groups = itertools.groupby(SL, key=operator.itemgetter(0))
  # auxiliary function to get "quality" for an item
  def _auxfun(g):
    item, iterable = g
    count = 0
    min_index = len(L)
    for _, where in iterable:
      count += 1
      min_index = min(min_index, where)
    # print 'item %r, count %r, minind %r' % (item, count, min_index)
    return count, -min_index
  # pick the highest-count/earliest item
  return max(groups, key=_auxfun)[0]

This could be written more concisely, of course, but I'm aiming for maximal clarity. The two print statements can be uncommented to better see the machinery in action; for example, with prints uncommented:

print most_common(['goose', 'duck', 'duck', 'goose'])

emits:

SL: [('duck', 1), ('duck', 2), ('goose', 0), ('goose', 3)]
item 'duck', count 2, minind 1
item 'goose', count 2, minind 0
goose

As you see, SL is a list of pairs, each pair an item followed by the item's index in the original list (to implement the key condition that, if the "most common" items with the same highest count are > 1, the result must be the earliest-occurring one).

groupby groups by the item only (via operator.itemgetter). The auxiliary function, called once per grouping during the max computation, receives and internally unpacks a group - a tuple with two items (item, iterable) where the iterable's items are also two-item tuples, (item, original index) [[the items of SL]].

Then the auxiliary function uses a loop to determine both the count of entries in the group's iterable, and the minimum original index; it returns those as combined "quality key", with the min index sign-changed so the max operation will consider "better" those items that occurred earlier in the original list.

This code could be much simpler if it worried a little less about big-O issues in time and space, e.g....:

def most_common(L):
  groups = itertools.groupby(sorted(L))
  def _auxfun((item, iterable)):
    return len(list(iterable)), -L.index(item)
  return max(groups, key=_auxfun)[0]

same basic idea, just expressed more simply and compactly... but, alas, an extra O(N) auxiliary space (to embody the groups' iterables to lists) and O(N squared) time (to get the L.index of every item). While premature optimization is the root of all evil in programming, deliberately picking an O(N squared) approach when an O(N log N) one is available just goes too much against the grain of scalability!-)

Finally, for those who prefer "oneliners" to clarity and performance, a bonus 1-liner version with suitably mangled names:-).

from itertools import groupby as g
def most_common_oneliner(L):
  return max(g(sorted(L)), key=lambda(x, v):(len(list(v)),-L.index(x)))[0]

Solution 4 - Python

What you want is known in statistics as mode, and Python of course has a built-in function to do exactly that for you:

>>> from statistics import mode
>>> mode([1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6])
3

Note that if there is no "most common element" such as cases where the top two are tied, this will raise StatisticsError, because statistically speaking, there is no mode in this case.

Solution 5 - Python

Without the requirement about the lowest index, you can use collections.Counter for this:

from collections import Counter

a = [1936, 2401, 2916, 4761, 9216, 9216, 9604, 9801] 

c = Counter(a)

print(c.most_common(1)) # the one most common element... 2 would mean the 2 most common
[(9216, 2)] # a set containing the element, and it's count in 'a'

Solution 6 - Python

If they are not hashable, you can sort them and do a single loop over the result counting the items (identical items will be next to each other). But it might be faster to make them hashable and use a dict.

def most_common(lst):
    cur_length = 0
    max_length = 0
    cur_i = 0
    max_i = 0
    cur_item = None
    max_item = None
    for i, item in sorted(enumerate(lst), key=lambda x: x[1]):
        if cur_item is None or cur_item != item:
            if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
                max_length = cur_length
                max_i = cur_i
                max_item = cur_item
            cur_length = 1
            cur_i = i
            cur_item = item
        else:
            cur_length += 1
    if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
        return cur_item
    return max_item

Solution 7 - Python

This is an O(n) solution.

mydict   = {}
cnt, itm = 0, ''
for item in reversed(lst):
     mydict[item] = mydict.get(item, 0) + 1
     if mydict[item] >= cnt :
         cnt, itm = mydict[item], item

print itm

(reversed is used to make sure that it returns the lowest index item)

Solution 8 - Python

Sort a copy of the list and find the longest run. You can decorate the list before sorting it with the index of each element, and then choose the run that starts with the lowest index in the case of a tie.

Solution 9 - Python

A one-liner:

def most_common (lst):
return max(((item, lst.count(item)) for item in set(lst)), key=lambda a: a[1])[0]

Solution 10 - Python

I am doing this using scipy stat module and lambda:

import scipy.stats
lst = [1,2,3,4,5,6,7,5]
most_freq_val = lambda x: scipy.stats.mode(x)[0][0]
print(most_freq_val(lst))

Result:

 most_freq_val = 5

Solution 11 - Python

# use Decorate, Sort, Undecorate to solve the problem

def most_common(iterable):
    # Make a list with tuples: (item, index)
    # The index will be used later to break ties for most common item.
    lst = [(x, i) for i, x in enumerate(iterable)]
    lst.sort()

    # lst_final will also be a list of tuples: (count, index, item)
    # Sorting on this list will find us the most common item, and the index
    # will break ties so the one listed first wins.  Count is negative so
    # largest count will have lowest value and sort first.
    lst_final = []

    # Get an iterator for our new list...
    itr = iter(lst)

    # ...and pop the first tuple off.  Setup current state vars for loop.
    count = 1
    tup = next(itr)
    x_cur, i_cur = tup

    # Loop over sorted list of tuples, counting occurrences of item.
    for tup in itr:
        # Same item again?
        if x_cur == tup[0]:
            # Yes, same item; increment count
            count += 1
        else:
            # No, new item, so write previous current item to lst_final...
            t = (-count, i_cur, x_cur)
            lst_final.append(t)
            # ...and reset current state vars for loop.
            x_cur, i_cur = tup
            count = 1

    # Write final item after loop ends
    t = (-count, i_cur, x_cur)
    lst_final.append(t)

    lst_final.sort()
    answer = lst_final[0][2]

    return answer

print most_common(['x', 'e', 'a', 'e', 'a', 'e', 'e']) # prints 'e'
print most_common(['goose', 'duck', 'duck', 'goose']) # prints 'goose'

Solution 12 - Python

Simple one line solution

moc= max([(lst.count(chr),chr) for chr in set(lst)])

It will return most frequent element with its frequency.

Solution 13 - Python

You probably don't need this anymore, but this is what I did for a similar problem. (It looks longer than it is because of the comments.)

itemList = ['hi', 'hi', 'hello', 'bye']

counter = {}
maxItemCount = 0
for item in itemList:
    try:
        # Referencing this will cause a KeyError exception
        # if it doesn't already exist
        counter[item]
        # ... meaning if we get this far it didn't happen so
        # we'll increment
        counter[item] += 1
    except KeyError:
        # If we got a KeyError we need to create the
        # dictionary key
        counter[item] = 1

    # Keep overwriting maxItemCount with the latest number,
    # if it's higher than the existing itemCount
    if counter[item] > maxItemCount:
        maxItemCount = counter[item]
        mostPopularItem = item

print mostPopularItem

Solution 14 - Python

Building on Luiz's answer, but satisfying the "in case of draws the item with the lowest index should be returned" condition:

from statistics import mode, StatisticsError

def most_common(l):
    try:
        return mode(l)
    except StatisticsError as e:
        # will only return the first element if no unique mode found
        if 'no unique mode' in e.args[0]:
            return l[0]
        # this is for "StatisticsError: no mode for empty data"
        # after calling mode([])
        raise

Example:

>>> most_common(['a', 'b', 'b'])
'b'
>>> most_common([1, 2])
1
>>> most_common([])
StatisticsError: no mode for empty data

Solution 15 - Python

ans  = [1, 1, 0, 0, 1, 1]
all_ans = {ans.count(ans[i]): ans[i] for i in range(len(ans))}
print(all_ans)
all_ans={4: 1, 2: 0}
max_key = max(all_ans.keys())

> 4

print(all_ans[max_key])

> 1

Solution 16 - Python

#This will return the list sorted by frequency:

def orderByFrequency(list):

    listUniqueValues = np.unique(list)
    listQty = []
    listOrderedByFrequency = []
    
    for i in range(len(listUniqueValues)):
        listQty.append(list.count(listUniqueValues[i]))
    for i in range(len(listQty)):
        index_bigger = np.argmax(listQty)
        for j in range(listQty[index_bigger]):
            listOrderedByFrequency.append(listUniqueValues[index_bigger])
        listQty[index_bigger] = -1
    return listOrderedByFrequency

#And this will return a list with the most frequent values in a list:

def getMostFrequentValues(list):
    
    if (len(list) <= 1):
        return list
    
    list_most_frequent = []
    list_ordered_by_frequency = orderByFrequency(list)
    
    list_most_frequent.append(list_ordered_by_frequency[0])
    frequency = list_ordered_by_frequency.count(list_ordered_by_frequency[0])
    
    index = 0
    while(index < len(list_ordered_by_frequency)):
        index = index + frequency
        
        if(index < len(list_ordered_by_frequency)):
            testValue = list_ordered_by_frequency[index]
            testValueFrequency = list_ordered_by_frequency.count(testValue)
            
            if (testValueFrequency == frequency):
                list_most_frequent.append(testValue)
            else:
                break    
    
    return list_most_frequent

#tests:
print(getMostFrequentValues([]))
print(getMostFrequentValues([1]))
print(getMostFrequentValues([1,1]))
print(getMostFrequentValues([2,1]))
print(getMostFrequentValues([2,2,1]))
print(getMostFrequentValues([1,2,1,2]))
print(getMostFrequentValues([1,2,1,2,2]))
print(getMostFrequentValues([3,2,3,5,6,3,2,2]))
print(getMostFrequentValues([1,2,2,60,50,3,3,50,3,4,50,4,4,60,60]))

Results:
[]
[1]
[1]
[1, 2]
[2]
[1, 2]
[2]
[2, 3]
[3, 4, 50, 60]

Solution 17 - Python

This is the obvious slow solution (O(n^2)) if neither sorting nor hashing is feasible, but equality comparison (==) is available:

def most_common(items):
  if not items:
    raise ValueError
  fitems = [] 
  best_idx = 0
  for item in items:   
    item_missing = True
    i = 0
    for fitem in fitems:  
      if fitem[0] == item:
        fitem[1] += 1
        d = fitem[1] - fitems[best_idx][1]
        if d > 0 or (d == 0 and fitems[best_idx][2] > fitem[2]):
          best_idx = i
        item_missing = False
        break
      i += 1
    if item_missing:
      fitems.append([item, 1, i])
  return items[best_idx]

But making your items hashable or sortable (as recommended by other answers) would almost always make finding the most common element faster if the length of your list (n) is large. O(n) on average with hashing, and O(n*log(n)) at worst for sorting.

Solution 18 - Python

Here:

def most_common(l):
    max = 0
    maxitem = None
    for x in set(l):
        count =  l.count(x)
        if count > max:
            max = count
            maxitem = x
    return maxitem

I have a vague feeling there is a method somewhere in the standard library that will give you the count of each element, but I can't find it.

Solution 19 - Python

>>> li  = ['goose', 'duck', 'duck']

>>> def foo(li):
         st = set(li)
         mx = -1
         for each in st:
             temp = li.count(each):
             if mx < temp:
                 mx = temp 
                 h = each 
         return h

>>> foo(li)
'duck'

Solution 20 - Python

I needed to do this in a recent program. I'll admit it, I couldn't understand Alex's answer, so this is what I ended up with.

def mostPopular(l):
    mpEl=None
    mpIndex=0
    mpCount=0
    curEl=None
    curCount=0
    for i, el in sorted(enumerate(l), key=lambda x: (x[1], x[0]), reverse=True):
        curCount=curCount+1 if el==curEl else 1
        curEl=el
        if curCount>mpCount \
        or (curCount==mpCount and i<mpIndex):
            mpEl=curEl
            mpIndex=i
            mpCount=curCount
    return mpEl, mpCount, mpIndex

I timed it against Alex's solution and it's about 10-15% faster for short lists, but once you go over 100 elements or more (tested up to 200000) it's about 20% slower.

Solution 21 - Python

Hi this is a very simple solution with big O(n)

L = [1, 4, 7, 5, 5, 4, 5]

def mode_f(L):
# your code here
    counter = 0
    number = L[0]
    for i in L:
        amount_times = L.count(i)
        if amount_times > counter:
            counter = amount_times
            number = i

    return number

Where number the element in the list that repeats most of the time

Solution 22 - Python

The most common element should be the one which is appearing more than N/2 times in the array where N being the len(array). The below technique will do it in O(n) time complexity, with just consuming O(1) auxiliary space.

from collections import Counter

def majorityElement(arr):        
    majority_elem = Counter(arr)
    size = len(arr)
    for key, val in majority_elem.items():
        if val > size/2:
            return key
    return -1

Solution 23 - Python

def most_frequent(List):

    counter = 0

    num = List[0]

 

    for i in List:

        curr_frequency = List.count(i)

        if(curr_frequency> counter):

            counter = curr_frequency

            num = i


    return num


List = [2, 1, 2, 2, 1, 3]

print(most_frequent(List))

Solution 24 - Python

def mostCommonElement(list):
  count = {} // dict holder
  max = 0 // keep track of the count by key
  result = None // holder when count is greater than max
  for i in list:
    if i not in count:
      count[i] = 1
    else:
      count[i] += 1
    if count[i] > max:
      max = count[i]
      result = i
  return result

> mostCommonElement(["a","b","a","c"]) -> "a"

Solution 25 - Python

 def most_common(lst):
    if max([lst.count(i)for i in lst]) == 1:
        return False
    else:
        return max(set(lst), key=lst.count)

Solution 26 - Python

def popular(L):
C={}
for a in L:
    C[a]=L.count(a)
for b in C.keys():
    if C[b]==max(C.values()):
        return b
L=[2,3,5,3,6,3,6,3,6,3,7,467,4,7,4]
print popular(L)

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionhojuView Question on Stackoverflow
Solution 1 - PythonnewacctView Answer on Stackoverflow
Solution 2 - PythonAlexView Answer on Stackoverflow
Solution 3 - PythonAlex MartelliView Answer on Stackoverflow
Solution 4 - PythonLuiz BertiView Answer on Stackoverflow
Solution 5 - PythonThe GodfatherView Answer on Stackoverflow
Solution 6 - PythonLukáลก LalinskýView Answer on Stackoverflow
Solution 7 - PythonThisIsMeMoonyView Answer on Stackoverflow
Solution 8 - PythonBoojumView Answer on Stackoverflow
Solution 9 - PythonwillurdView Answer on Stackoverflow
Solution 10 - PythonAmir FView Answer on Stackoverflow
Solution 11 - PythonstevehaView Answer on Stackoverflow
Solution 12 - PythonShivam AgrawalView Answer on Stackoverflow
Solution 13 - PythonEd HoldenView Answer on Stackoverflow
Solution 14 - PythonkrassowskiView Answer on Stackoverflow
Solution 15 - PythonShah VipulView Answer on Stackoverflow
Solution 16 - PythonLksView Answer on Stackoverflow
Solution 17 - PythonptsView Answer on Stackoverflow
Solution 18 - PythonLennart RegebroView Answer on Stackoverflow
Solution 19 - PythonPratik DeoghareView Answer on Stackoverflow
Solution 20 - PythonpauleohareView Answer on Stackoverflow
Solution 21 - PythonSceneView Answer on Stackoverflow
Solution 22 - PythonLITDataScienceView Answer on Stackoverflow
Solution 23 - PythonG.pavaniView Answer on Stackoverflow
Solution 24 - PythonIsrael ManzoView Answer on Stackoverflow
Solution 25 - PythonEcanalesView Answer on Stackoverflow
Solution 26 - PythonPronoyView Answer on Stackoverflow