Check if dataframe column is Categorical
PythonPandasPython Problem Overview
I can't seem to get a simple dtype check working with Pandas' improved Categoricals in v0.15+. Basically I just want something like is_categorical(column) -> True/False
.
import pandas as pd
import numpy as np
import random
df = pd.DataFrame({
'x': np.linspace(0, 50, 6),
'y': np.linspace(0, 20, 6),
'cat_column': random.sample('abcdef', 6)
})
df['cat_column'] = pd.Categorical(df2['cat_column'])
We can see that the dtype
for the categorical column is 'category':
df.cat_column.dtype
Out[20]: category
And normally we can do a dtype check by just comparing to the name of the dtype:
df.x.dtype == 'float64'
Out[21]: True
But this doesn't seem to work when trying to check if the x
column
is categorical:
df.x.dtype == 'category'
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-94d2608815c4> in <module>()
----> 1 df.x.dtype == 'category'
TypeError: data type "category" not understood
Is there any way to do these types of checks in pandas v0.15+?
Python Solutions
Solution 1 - Python
Use the name
property to do the comparison instead, it should always work because it's just a string:
>>> import numpy as np
>>> arr = np.array([1, 2, 3, 4])
>>> arr.dtype.name
'int64'
>>> import pandas as pd
>>> cat = pd.Categorical(['a', 'b', 'c'])
>>> cat.dtype.name
'category'
So, to sum up, you can end up with a simple, straightforward function:
def is_categorical(array_like):
return array_like.dtype.name == 'category'
Solution 2 - Python
First, the string representation of the dtype is 'category'
and not 'categorical'
, so this works:
In [41]: df.cat_column.dtype == 'category'
Out[41]: True
But indeed, as you noticed, this comparison gives a TypeError
for other dtypes, so you would have to wrap it with a try .. except ..
block.
Other ways to check using pandas internals:
In [42]: isinstance(df.cat_column.dtype, pd.api.types.CategoricalDtype)
Out[42]: True
In [43]: pd.api.types.is_categorical_dtype(df.cat_column)
Out[43]: True
For non-categorical columns, those statements will return False
instead of raising an error. For example:
In [44]: pd.api.types.is_categorical_dtype(df.x)
Out[44]: False
For much older version of pandas
, replace pd.api.types
in the above snippet with pd.core.common
.
Solution 3 - Python
Just putting this here because pandas.DataFrame.select_dtypes()
is what I was actually looking for:
df['column'].name in df.select_dtypes(include='category').columns
Thanks to @Jeff.
Solution 4 - Python
In my pandas version (v1.0.3), a shorter version of joris' answer is available.
df = pd.DataFrame({'noncat': [1, 2, 3], 'categ': pd.Categorical(['A', 'B', 'C'])})
print(isinstance(df.noncat.dtype, pd.CategoricalDtype)) # False
print(isinstance(df.categ.dtype, pd.CategoricalDtype)) # True
print(pd.CategoricalDtype.is_dtype(df.noncat)) # False
print(pd.CategoricalDtype.is_dtype(df.categ)) # True
Solution 5 - Python
I ran into this thread looking for the exact same functionality, and also found out another option, right from the pandas documentation here.
It looks like the canonical way to check if a pandas dataframe column is a categorical Series should be the following:
hasattr(column_to_check, 'cat')
So, as per the example given in the initial question, this would be:
hasattr(df.x, 'cat') #True
Solution 6 - Python
Nowadays you can use:
pandas.api.types.is_categorical_dtype(series)
Docs here: https://pandas.pydata.org/docs/reference/api/pandas.api.types.is_categorical_dtype.html
Available since at least pandas 1.0
Solution 7 - Python
Taking a look at @Jeff Tratner answer, since the condition df.cat_column.dtype == 'category'
not needs to be True
to be considered a column as cataegorical,
I propose this considering categorical the dtypes within 'categorical_dtypes' list:
def is_cat(column):
categorical_dtypes = ['object', 'category', 'bool']
if column.dtype.name in categorical_dtypes:
return True
else:
return False
´´´