C++ cast to derived class

C++Inheritance

C++ Problem Overview


How can i cast to a derived class? The below approaches all give the following error:

> Cannot convert from BaseType to DerivedType. No constructor could take > the source type, or constructor overload resolution was ambiguous.

BaseType m_baseType;

DerivedType m_derivedType = m_baseType; // gives same error

DerivedType m_derivedType = (DerivedType)m_baseType; // gives same error

DerivedType * m_derivedType = (DerivedType*) & m_baseType; // gives same error

C++ Solutions


Solution 1 - C++

Think like this:

class Animal { /* Some virtual members */ };
class Dog: public Animal {};
class Cat: public Animal {};


Dog     dog;
Cat     cat;
Animal& AnimalRef1 = dog;  // Notice no cast required. (Dogs and cats are animals).
Animal& AnimalRef2 = cat;
Animal* AnimalPtr1 = &dog;
Animal* AnimlaPtr2 = &cat;

Cat&    catRef1 = dynamic_cast<Cat&>(AnimalRef1);  // Throws an exception  AnimalRef1 is a dog
Cat*    catPtr1 = dynamic_cast<Cat*>(AnimalPtr1);  // Returns NULL         AnimalPtr1 is a dog
Cat&    catRef2 = dynamic_cast<Cat&>(AnimalRef2);  // Works
Cat*    catPtr2 = dynamic_cast<Cat*>(AnimalPtr2);  // Works

// This on the other hand makes no sense
// An animal object is not a cat. Therefore it can not be treated like a Cat.
Animal  a;
Cat&    catRef1 = dynamic_cast<Cat&>(a);    // Throws an exception  Its not a CAT
Cat*    catPtr1 = dynamic_cast<Cat*>(&a);   // Returns NULL         Its not a CAT.

Now looking back at your first statement:

Animal   animal = cat;    // This works. But it slices the cat part out and just
                          // assigns the animal part of the object.
Cat      bigCat = animal; // Makes no sense.
                          // An animal is not a cat!!!!!
Dog      bigDog = bigCat; // A cat is not a dog !!!!

You should very rarely ever need to use dynamic cast.
This is why we have virtual methods:

void makeNoise(Animal& animal)
{
     animal.DoNoiseMake();
}

Dog    dog;
Cat    cat;
Duck   duck;
Chicken chicken;

makeNoise(dog);
makeNoise(cat);
makeNoise(duck);
makeNoise(chicken);

The only reason I can think of is if you stored your object in a base class container:

std::vector<Animal*>  barnYard;
barnYard.push_back(&dog);
barnYard.push_back(&cat);
barnYard.push_back(&duck);
barnYard.push_back(&chicken);

Dog*  dog = dynamic_cast<Dog*>(barnYard[1]); // Note: NULL as this was the cat.

But if you need to cast particular objects back to Dogs then there is a fundamental problem in your design. You should be accessing properties via the virtual methods.

barnYard[1]->DoNoiseMake();

Solution 2 - C++

You can't cast a base object to a derived type - it isn't of that type.

If you have a base type pointer to a derived object, then you can cast that pointer around using dynamic_cast. For instance:

DerivedType D;
BaseType B;

BaseType *B_ptr=&B
BaseType *D_ptr=&D;// get a base pointer to derived type

DerivedType *derived_ptr1=dynamic_cast<DerivedType*>(D_ptr);// works fine
DerivedType *derived_ptr2=dynamic_cast<DerivedType*>(B_ptr);// returns NULL

Solution 3 - C++

dynamic_cast should be what you are looking for.

EDIT:

DerivedType m_derivedType = m_baseType; // gives same error

The above appears to be trying to invoke the assignment operator, which is probably not defined on type DerivedType and accepting a type of BaseType.

DerivedType * m_derivedType = (DerivedType*) & m_baseType; // gives same error

You are on the right path here but the usage of the dynamic_cast will attempt to safely cast to the supplied type and if it fails, a NULL will be returned.

Going on memory here, try this (but note the cast will return NULL as you are casting from a base type to a derived type):

DerivedType * m_derivedType = dynamic_cast<DerivedType*>(&m_baseType);

If m_baseType was a pointer and actually pointed to a type of DerivedType, then the dynamic_cast should work.

Hope this helps!

Solution 4 - C++

First of all - prerequisite for downcast is that object you are casting is of the type you are casting to. Casting with dynamic_cast will check this condition in runtime (provided that casted object has some virtual functions) and throw bad_cast or return NULL pointer on failure. Compile-time casts will not check anything and will just lead tu undefined behaviour if this prerequisite does not hold.
Now analyzing your code:

DerivedType m_derivedType = m_baseType;

Here there is no casting. You are creating a new object of type DerivedType and try to initialize it with value of m_baseType variable.

Next line is not much better:

DerivedType m_derivedType = (DerivedType)m_baseType;

Here you are creating a temporary of DerivedType type initialized with m_baseType value.

The last line

DerivedType * m_derivedType = (DerivedType*) & m_baseType;

should compile provided that BaseType is a direct or indirect public base class of DerivedType. It has two flaws anyway:

  1. You use deprecated C-style cast. The proper way for such casts is
    static_cast<DerivedType *>(&m_baseType)
  2. The actual type of casted object is not of DerivedType (as it was defined as BaseType m_baseType; so any use of m_derivedType pointer will result in undefined behaviour.

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
Questionuser346443View Question on Stackoverflow
Solution 1 - C++Martin YorkView Answer on Stackoverflow
Solution 2 - C++Michael KohneView Answer on Stackoverflow
Solution 3 - C++MichaelView Answer on Stackoverflow
Solution 4 - C++Tadeusz Kopec for UkraineView Answer on Stackoverflow