Big O of JavaScript arrays

JavascriptArraysAlgorithmBig OTime Complexity

Javascript Problem Overview


Arrays in JavaScript are very easy to modify by adding and removing items. It somewhat masks the fact that most languages arrays are fixed-size, and require complex operations to resize. It seems that JavaScript makes it easy to write poorly performing array code. This leads to the question:

What performance (in terms of big O time complexity) can I expect from JavaScript implementations in regards to array performance?

I assume that all reasonable JavaScript implementations have at most the following big O's.

  • Access - O(1)
  • Appending - O(n)
  • Prepending - O(n)
  • Insertion - O(n)
  • Deletion - O(n)
  • Swapping - O(1)

JavaScript lets you pre-fill an array to a certain size, using new Array(length) syntax. (Bonus question: Is creating an array in this manner O(1) or O(n)) This is more like a conventional array, and if used as a pre-sized array, can allow O(1) appending. If circular buffer logic is added, you can achieve O(1) prepending. If a dynamically expanding array is used, O(log n) will be the average case for both of those.

Can I expect better performance for some things than my assumptions here? I don't expect anything is outlined in any specifications, but in practice, it could be that all major implementations use optimized arrays behind the scenes. Are there dynamically expanding arrays or some other performance-boosting algorithms at work?

P.S.

The reason I'm wondering this is that I'm researching some sorting algorithms, most of which seem to assume appending and deleting are O(1) operations when describing their overall big O.

Javascript Solutions


Solution 1 - Javascript

NOTE: While this answer was correct in 2012, engines use very different internal representations for both objects and arrays today. This answer may or may not be true.

In contrast to most languages, which implement arrays with, well, arrays, in Javascript Arrays are objects, and values are stored in a hashtable, just like regular object values. As such:

  • Access - O(1)
  • Appending - Amortized O(1) (sometimes resizing the hashtable is required; usually only insertion is required)
  • Prepending - O(n) via unshift, since it requires reassigning all the indexes
  • Insertion - Amortized O(1) if the value does not exist. O(n) if you want to shift existing values (Eg, using splice).
  • Deletion - Amortized O(1) to remove a value, O(n) if you want to reassign indices via splice.
  • Swapping - O(1)

In general, setting or unsetting any key in a dict is amortized O(1), and the same goes for arrays, regardless of what the index is. Any operation that requires renumbering existing values is O(n) simply because you have to update all the affected values.

Solution 2 - Javascript

guarantee

There is no specified time complexity guarantee for any array operation. How arrays perform depends on the underlying datastructure the engine chooses. Engines might also have different representations, and switch between them depending on certain heuristics. The initial array size might or might not be such an heuristic.

reality

For example, V8 uses (as of today) both hashtables and array lists to represent arrays. It also has various different representations for objects, so arrays and objects cannot be compared. Therefore array access is always better than O(n), and might even be as fast as a C++ array access. Appending is O(1), unless you reach the size of the datastructure and it has to be scaled (which is O(n)). Prepending is worse. Deletion can be even worse if you do something like delete array[index] (don't!), as that might force the engine to change its representation.

advice

Use arrays for numeric datastructures. That's what they are meant for. That's what engines will optimize them for. Avoid sparse arrays (or if you have to, expect worse performance). Avoid arrays with mixed datatypes (as that makes internal representations more complex).

If you really want to optimize for a certain engine (and version), check its sourcecode for the absolute answer.

Attributions

All content for this solution is sourced from the original question on Stackoverflow.

The content on this page is licensed under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

Content TypeOriginal AuthorOriginal Content on Stackoverflow
QuestionKendall FreyView Question on Stackoverflow
Solution 1 - JavascriptNick JohnsonView Answer on Stackoverflow
Solution 2 - JavascriptJonas WilmsView Answer on Stackoverflow